Применение цифрового спектрального анализа на основе многоскоростной обработки в радиолокаторе с синтезированной апертурой

А.Ю. Антонов, В.В. Костров

Муромский институт (филиал) Владимирского государственного университета имени Александра Григорьевича и Николая Григорьевича Столетовых, 602264 г. Муром, Владимирская обл., ул. Орловская, 23. E-mail: <u>aleksandr_uran@mail.ru</u>, <u>vvk@mit.ru</u>

Приведена сравнительная оценка спектрального анализа на основе многоскоростной обработки и ДПФ (БПФ) по быстродействию и разрешающей способности. Проведено моделирование на языке программирования C^{++} одноступенчатой и двухступенчатой системы многоскоростной обработки, а также алгоритма ДПФ (БПФ). The comparative estimation of spectrum analysis based on multi-rate processing and DFT (FFT) on

speed and frequency resolution is resulted. Modeling in programming language C++ one-stage and two-stage multi-rate processing system, and also algorithm DFT (FFT) is spent.

Цифровой спектральный анализ (ЦСА) является одной ИЗ областей, представляющей широкий практический интерес. В [1-6] изложены различные методы ЦСА, среди которых особенно широкое распространение в различных областях науки и техники получил ЦСА на основе дискретного преобразования Фурье (ДПФ), позволяющий эффективно преобразовывать сигнал из временной области в частотную, и наоборот. Широкому использованию ЦСА на основе ДПФ благоприятствуют хорошо разработанные методы быстрых вычислений по алгоритму дискретного преобразования Фурье (БПФ) и вычислительные средства с аппаратной поддержкой базовой операции БПФ – «бабочки». Однако в многоканальных системах коммуникаций аналогичную операцию выполняют трансмультиплексоры, в основе работы которых лежит многоскоростная обработка (МСО) сигналов. По сути трансмультиплексор собой представляет набор фильтров-дециматоров [4, осуществляющих 5], преобразования, аналогичные ДПФ [6]. Вместе с тем трансмультиплексоры позволяют вести многопоточную обработку информации в режиме реального времени, что актуально в радиолокаторах с синтезированной апертурой (РСА) особенно космического базирования.

Целью данной работы является сравнение спектрального анализа на основе ДПФ (с весовой обработкой) со спектральным анализом на основе МСО при длине выборки *N*=2048. Критериями для сравнения являются вычислительная эффективность и разрешающая способность в рамках алгоритма обработки траекторного сигнала.

В качестве модели входного сигнала устройства ЦСА использовался отклик на 2 точечные цели при съемке в режиме ScanSAR. Бигармонический сигнал часто используется при анализе цифровых систем и позволяет оценить такие параметры как разрешающая способность, качество разделение каналов. Комплексная запись бигармонического сигнала имеет следующий вид:

$$x(n) = A_1 \cdot \exp\left(j\frac{2\pi F_1}{F_d}\right) + A_2 \cdot \exp\left(j\frac{2\pi F_2}{F_d}\right),$$

где A_1 и A_2 – амплитуды первого и второго колебания соответственно; F_1 и F_2 – частоты первого и второго колебания соответственно; F_d – частота дискретизации; n – номер дискрета во временной области, n=0, 1, 2...N-1; N – длина выборки.

Прямое ДПФ определяется следующей формулой:

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-j\frac{2\pi \cdot n \cdot k}{N}}, \qquad (1)$$

где *k* – номер дискрета (спектральной составляющей) в частотной области, *k*=0, 1, 2...*N*-1.

В данном выражении результат ДПФ можно интерпретировать как сумму отсчетов входного сигнала, спектр которого предварительно был сдвинут влево на значение нормированной частоты $\omega_k = 2\pi \cdot k/N$.

Рис. 1. Структура ДПФ (а) и одноступенчатой системы МСО (б).

С точки зрения цифровой фильтрации ДПФ можно представить как набор параллельных полосовых фильтров Φ_0 - Φ_{N-1} (рис. 1*a*). В [6] показано, что фильтры Φ_0 - $\frac{-j\frac{2\pi\cdot n\cdot k}{N}}{N}$

 Φ_{N-1} являются КИХ-фильтрами с импульсной характеристикой $h_k(n) = e^{-\int N}$. При этом коэффициентами фильтра с номером *k* являются отсчеты гармонического колебания с частотой $\omega_k = 2\pi \cdot k/N$. Таким образом, ДПФ имеет различную интерпретацию в зависимости от того, с точки зрения какой теории его рассматривать.

Также следует отметить, что на практике ДПФ имеет неприятную особенность – растекание спектра при нецелом количестве периодов входного сигнала. Для уменьшения влияния данного фактора используется весовая обработка. Однако применение весовых окон, как правило, ухудшает разрешающую способность. Получаемая с помощью ДПФ разрешающая способность по частоте определяется как

$$\Delta f = \frac{F_d}{N} \cdot k_p = \frac{k_p}{NT_d},\tag{2}$$

где *T*_d – период дискретизации,

 k_p – коэффициент расширения главного лепестка (отклика), обусловленный применением весовой обработки, $k_p>1$.

Рассмотрим реализацию спектрального анализа на основе МСО. Структурная схема для реализации одноступенчатой системы МСО представлена на рис. 16 и содержит ФНЧ (Φ_0 - Φ_{N-1}) и дециматор с коэффициентом децимации v=N. По сути, последовательность операций переноса спектра, фильтрации с помощью ФНЧ и децимации сигнала эквивалентна полосовому фильтру-дециматору. Параметры фильтров системы МСО имеют следующие соотношения:

• полоса пропускания фильтра Δf_{np} равна разрешающей способности $\Delta f \prod \Phi$ без применения весовой обработки ($k_p=1$);

• отношение частоты дискретизации F_d к полосе пропускания фильтра Δf_{np} , а также длина фильтра N_d и коэффициент децимации *v* равны *N*;

• коэффициент подавления в полосе задержания $k_{_3} = 1/N$.

На выходе каждого фильтра-дециматора получаем амплитудное значение спектральной составляющей X(k) в полосе пропускания данного фильтра. Совокупность спектральных составляющих X(0)-X(N-1) образуют спектр входного сигнала x(n).

Следует заметить, что спектральный анализ на основе цифровой фильтрации предъявляет повышенные требования к ширине переходной полосы фильтра: чем она уже, тем лучше различаются спектральные составляющие на границе соседних элементов разрешения синтезируемого изображения. В данном случае, если выбрать переходную полосу Δf_n равной полосе пропускания Δf_{np} , то при указанных выше соотношениях фильтр легко реализуется. Расчет оптимальной многоступенчатой структуры системы МСО является многоитерационным и довольно трудоемким [7-9].

При спектральном анализе на основе ДПФ используется весовая обработка. Поскольку одним из важных параметров является разрешающая способность, то для достижения наилучшей разрешающей способности выберем весовую функцию с наименьшим коэффициентом расширения главного лепестка k_p при достаточно высоком уровне подавления боковых лепестков. На основании данных, приведенных в [2], вышеуказанным требованиям удовлетворяют весовые окна Чебышева (равноволновое окно), Хэмминга и усеченное гауссовское окно. Однако весовая функция Хэмминга имеет более компактную запись во временной области, поэтому выберем данное весовое окно.

При моделировании использовались следующие параметры: база ДПФ N=2048, частота дискретизации $F_d=2048$ Гц, амплитуды $A_1=A_2=1$ В и частоты $F_1=112$ Гц, $F_2=384$ Гц первой и второй спектральной составляющей входного сигнала соответственно – 1 случай. Для 2 случая частоты $F_1=111,5$ Гц, $F_2=383,5$ Гц при их расположении посередине между частотами соседних спектральных составляющих. Для определения полосы пропускания фильтров Δf_{np} системы МСО найдем первичную разрешающую способность без учета весовой обработки в соответствии с (2):

$$\Delta f_{np} = \Delta f = \frac{2048}{2048} \cdot 1 = 1 \ \Gamma \mathrm{u}.$$

Расчет фильтров наиболее просто осуществить с помощью встроенных функций программных продуктов Mathcad и Matlab. Для сравнительного анализа использовались фильтры с применением весового окна Хэмминга (MCO1, MCO2 BO), без весовой обработки (MCO2) и два фильтра, рассчитанные по алгоритму Мак-Клелана (MCO2 П-М). В таблице 1 приведены основные параметры полученных фильтров: ширина полосы пропускания Δf_{np} , ширина переходной полосы Δf_n , коэффициент подавления в полосе задержания k_3 и коэффициент пульсаций в полосе пропускания k_n .

Параметр	MCO1	МСО2 П-М	MCO2 BO	MCO2
$\Delta f_{np}, \Gamma$ ц	1	32(1)	32(1)	32(1)
Δf_n , Гц		32(1)		
<i>k</i> ₃, дБ		-33,28(-28,72)		
<i>k</i> _n , дБ		1,12(0,96)		

Таблица 1. Параметры фильтров системы МСО

На рисунках 2*a* и 2*в* представлены первые 512 спектральных составляющих, полученные в результате моделирования для 1 и 2 случая соответственно (для наглядности и простоты сравнения амплитуды спектральных составляющих,

полученные в результате вычисления ДПФ, поделены на базу *N*). На рисунках 36 и 3г представлены главные отклики для 1 и 2 случая соответственно.

Рис. 2. Модуль спектра сигнала.

Таблица 2. Сравнительная характеристика результатов

Параметр	БПΦ	MCO1	МСО2 П-М	MCO2 BO	MCO2
УБЛ _{мах} , дБ			-35,1(-35,1)	-47(-45,8)	-23,46(-23,42)
$\Delta f_{\it гл}, \Gamma$ ц	1,15(1,67)	1,17(1,75)	0,95(1,58)	1,2(1,75)	0.7(2)
$A_{\text{max}}, \mathbf{B}$	0,54(0,44)	0,5(0,42)	1,26(1)	0,25(0,21)	0,76(0,51)

В таблице 2 представлены основные параметры полученных спектров (в скобках даны значения для 2 случая): максимальный уровень боковых лепестков УБЛ_{мах}, ширина главного лепестка Δf_{27} по уровню 0,707 от максимального значения, максимальная амплитуда спектральных компонент $A_{\text{мах}}$. На основании полученных результатов можно сделать вывод, что двухступенчатая система МСО уступает ДПФ по максимальному уровню боковых лепестков (в таблице не представлены значения УБЛ для ДПФ и МСО1, поскольку данный показатель был менее -100 дБ). Кроме этого, для данной системы заметно увеличение количества ложных спектральных составляющих около частоты F_2 , что связано с расположением частоты F_2 на границе полос пропускания фильтров первой ступени. Также необходимо заметить, что система МСО2 П-М имеет наименьшую ширину главного лепестка (значение системы MCO2 не учитывается, так как данный тип фильтров редко используется в ЦСА), а система MCO2 ВО обладает наименьшим УБЛ.

Следует подчеркнуть сходство результатов на выходе системы MCO1 и ДПФ, что объясняется способом расчета коэффициентов фильтра встроенной функцией, которая основана на методе частотной выборки. Уменьшение амплитуды спектральных составляющих до 0,5 В для ДПФ и системы MCO1 обусловлено применением весовой обработки.

При расположении частот F_1 и F_2 посередине между спектральными составляющими произошло ухудшение разрешающей способности (в 1,45-2,86 раза), а также уменьшение амплитуд спектральных составляющих (на 16-33%).

Оценим вычислительную эффективность алгоритмов, приняв за одну операцию не только операцию комплексного сложения или умножения, но и комплексного умножения с накоплением. Количество вычислительных операций одноступенчатой системы МСО равно аналогичному показателю для ДПФ

$$N_{MCO1} = N_{\Pi \Phi} = N = 2048^2 = 4194304.$$

Для многоступенчатой системы MCO количество требуемых вычислительных операций складывается из количества операций на каждой ступени:

$$N_{MCO2} = N \cdot \sum_{i=1}^{L} N_{\phi i} ,$$

где *L* – число ступеней;

 $N_{\phi i}$ – длина фильтра на *i*-ой ступени, численно совпадает с v_i .

Для двухступенчатой системы MCO (*L*=2) при *N*=2048, $N_{\phi l}$ =64 и $N_{\phi 2}$ =32 получаем $N_{MSO2} = 2048 \cdot (64 + 32) = 196608$,

что более чем в 21 раз меньше количества вычислений по сравнению с одноступенчатой системой и ДПФ. Однако при моделировании использовался более эффективный алгоритм БПФ, для которого количество вычислительных операций [2,4,6] составляет

$$N_{E\Pi\Phi} = N \cdot \log_2 N = 2048 \cdot \log_2 2048 = 22528$$
.

Таким образом, при длине входной выборки N=2048 спектральный анализ на основе одноступенчатой системы MCO, реализованной на КИХ-фильтрах уступает БПФ по количеству вычислительных операций. Применение двухступенчатой системы MCO позволяет получить выигрыш в вычислениях в 21 раз. Однако данная система имеет худшее значение УБЛ, что связано с длиной фильтра, применяемого в MCO, которая ограничена длиной входной выборки. Данное ограничение не позволяет реализовать фильтр с узкой переходной полосой и высоким коэффициентом подавления вне полосы пропускания одновременно. Поэтому ЦСА на основе MCO пока не может заменить ЦСА на основе БПФ применяемый при синтезе радиоизображений, полученных с PCA космического базирования.

Кроме этого, при синтезе фильтров следует отдавать предпочтение алгоритмам с более точной настройкой параметров, что позволит получить оптимальный фильтр с точки зрения полосы пропускания и коэффициента подавления вне её.

Литература

1. Харкевич А. А. Спектры и анализ. Изд. 5-е. – М.: Книжный дом «Либроком», 2009. – 240 с.

2. Марпл-мл. С. Л. Цифровой спектральный анализ и его приложения: Пер. с англ. – М.: Мир, 1990. – 584 с.

3. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения: Пер. с англ. в 2 томах. – М.: Мир, Вып. 1, 1971. – 317 с.; Вып. 2, 1972. – 285 с.

4. Айфичер Э. С., Джервис Б. У. *Цифровая обработка сигналов: практический подход*. 2-е издание: Пер. с англ. – М.: Издательский дом «Вильямс», 2004. – 992 с.

5. Гольденберг Л. М., Матюшкин Б. Д., Поляк М. Н. *Цифровая обработка сигналов*: Справочник. – М.: Радио и связь, 1985. – 312 с.

6. Сергиенко А. Б. *Цифровая обработка сигналов*: Учеб. пособие. 3-е изд. – СПб.: БХВ-Петербург, 2011. – 768 с.

7. Витязев В. В., Зайцев А. А. Оптимальное проектирование многоступенчатых структур фильтров-дециматоров на сигнальных процессорах // Цифровая обработка сигналов. 2001. № 2. С. 2-9.

8. Витязев В. В., Зайцев А. А. *Основы многоскоростной обработки сигналов*: Учеб. пособие. Ч. 1. – Рязань: Рязан. гос. радиотехн. акад., 2005. – 124 с.

9. Витязев В. В., Зайцев А. А. Основы многоскоростной обработки сигналов: Учеб. пособие. Ч. 2. – Рязань: Рязан. гос. радиотехн. ун-т., 2006. – 104 с.