Восстановление изображений с оценкой аппаратной функции в радиометрических наблюдениях

В.К. Клочко, О.Н. Макарова

Рязанский государственный радиотехнический университет, 390005, Рязань, ул. Гагарина, 59/1, Email: <u>klochkovk@mail.ru</u>

Предлагается метод восстановления изображений объектов с оценкой аппаратной функции в радиометрической системе миллиметрового диапазона, работающей с большим шагом сканирования по углу места. Метод основан на оптимальном выборе значений аппаратной функции в процессе восстановления изображения.

The method of recovery of images of objects with an assessment of device function in the radiometric system of millimetric range working with a big step of scanning in a place corner is offered. The method is based on an optimum choice of values of hardware function in the course of recovery of the image.

Введение

При восстановлении изображений на основе радиометрических наблюдений [1] обычно считается, что аппаратная функция (АФ) задана и соответствует форме диаграммы направленности антенны (ДНА). Однако в действительностиАФ зависит от условий наблюдения и тракта первичной обработки радиометра, включающего высокочастотное усиление, квадратичное детектирование и фильтрацию низких частот. Это приводит к необходимости уточнения АФ при восстановлении изображений.

Цель работы – разработка и исследование метода восстановления изображения объектов с оценкой аппаратной функции на основе прореженной матрицы радиометрических наблюдений.

Постановка задачи

Радиометрическая система наблюдает удаленные объекты на местности. Объекты излучают поле $X = \{x(\theta_i, \varphi_j)\}, i = \overline{1, M}, j = \overline{1, N},$ элементы дискретизации которого $x(\theta_i, \varphi_j)$ имеют смысл интенсивности излучения в i,j-м направлении и рассматриваются в системе угловых координат наблюдателя: θ_i – по углу места и φ_j – по азимуту. Числа M и N определяют размеры поля X.

Антенна радиометра построчно сканирует участок местности по азимуту и углу места с определенной скоростью, зависящей от времени накопления сигнала в ФНЧ. При каждом θ_i, φ_j -м угловом положении линии визирования антенны принимаемое поле X усиливается радиометром и после ФНЧ регистрируется в виде напряжения $y(\theta_i, \varphi_j)$. Величина $y(\theta_i, \varphi_j)$ носит интегральный характер и подчинена модели в виде свертки:

$$y(\theta_i, \varphi_j) = \iint_{D_{\theta, \varphi}} \alpha(\theta_1, \varphi_1) x(\theta_i - \theta_1, \varphi_j - \varphi_1) d\theta_1 d\varphi_1 + p(\theta_i, \varphi_j),$$
(1)

где интегрирование по области $D_{\theta,\varphi}$ ведется в угловых координатах по элементам $x(\theta,\varphi)$ поля X с весовой функцией $\alpha(\theta,\varphi)$, имеющей смысл АФ.

Шумы аппаратуры представлены слагаемым $p(\theta_i, \varphi_i)$.

Перейдем от интегральной (1) к суммарной модели в *i,j*-х элементах дискретизации искомого поля изображения $X = \{x(i, j)\}, i = \overline{1, M}, j = \overline{1, N}$:

$$y(i,j) = c_1 \sum_{\substack{i_1 = -m \\ i_1 = -n}}^{m} \sum_{\substack{j_1 = -n \\ i = \overline{m+1, h, M-m}}}^{n} \alpha(i_1, j_1) x(i-i_1, j-j_1) + p(i, j),$$
(2)

где 2m+1 и 2n+1 – ширина ДНА соответственно по углу места и азимуту (на уровне 0,5 мощности) в количестве элементов дискретизации;

 $\alpha(i, j)$ – значения АФ;

 c_1 –множитель, учитывающий переход от непрерывной модели (1) к дискретной модели (2) [в дальнейшем опускается];

p(i, j) – белый шум с дисперсией σ_p^2 ;

h≥1 – шаг сканирования по углу места.

При h > 1 матрица радиометрических наблюдений $Y = \{y(i, j)\}$ оказывается прореженной вдоль строк, при этом пропущенные строки или обнуляются, или не рассматриваются.

Задача заключается в восстановлении ненаблюдаемого поля $X = \{x(i, j)\}$ по наблюдениям (2) с оцениванием АФ $\alpha(i, j)$.

Восстановление с помощью фильтра Винера

Особенность частотного подхода заключается в том, что матрица изображения X и матрица наблюдений Y должны иметь одинаковые размеры. В связи с этим элементы прореженной матрицы Y, расположенные по периметру поля X, заполняем нулями: $y(i, j) = 0, i = \overline{1,m}, i = \overline{M - m + 1, M}, j = \overline{1, n}, i = \overline{N - n + 1, N}$, а элементы недостающих строк заполняем с помощью линейной интерполяции соответствующих элементов соседних строк.

Известно [2], что решение в частотной области должно обладать свойством периодичности. Чтобы обеспечить пространственную периодичность матрицы A значений $A\Phi$ и соответственно передаточной функции восстанавливающего фильтра заранее по углам предварительно обнуленной матрицы $A = \{a(i, j)\}, i = \overline{1, M}, j = \overline{1, N}$, размещаем элементы $A\Phi$ по определенному правилу. Ниже показан пример заполнения матрицы A коэффициентами $alfa(i, j) = \alpha(i - m - 1, j - n - 1), i = \overline{1, 2m + 1}, j = \overline{1, 2n + 1}$ на языке Matlab:

A=zeros(M,N);	
% Первый угол А:	% Второй угол А:
for i=1:m+1	for i=1:m+1
for j=1:n+1	for j1=1:n
i1=i+m; j1=j+n;	i1=i+m; j=N-n+j1;
A(i,j)=alfa(i1,j1);	A(i,j)=alfa(i1,j1);
end%jend%j1%	
end%i	end%i
% Третий угол А:	% Четвертый угол А:
for i1=1:m	for i1=1:m
for j=1:n+1	for j1=1:n
i=M-m+i1; j1=j+n;	i=M-m+i1; j=N-n+j1;
A(i,j)=alfa(i1,j1);	A(i,j)=alfa(i1,j1);
end%jend%j1	

end%i1 end%i1

Матрица $A = \{a(i, j)\}$ подвергается двумерному дискретному преобразованию Фурье (ДПФ), и в области пространственных частот f_i и f_j образуется матрица $A_f = \{a_f(i, j)\}, i = \overline{1, M}, j = \overline{1, N},$ где $a_f(i, j) = F_2[a(i, j)], F_2$ – символ двумерного ДПФ.

Наблюдения $Y = \{y(i, j)\}$ также подвергаются ДПФ, в результате чего получается спектральная матрица наблюдений: $Y_f = \{y_f(i, j)\}, \quad i = \overline{1, M}, \quad j = \overline{1, N},$ где $y_f(i, j) = F_2[y(i, j)].$

В частотной области свертка (2) для h = 1 принимает известный вид:

$$y_f(i,j) = a_f(i,j) \cdot x_f(i,j) + p_f(i,j), \quad i = 1, M, \quad j = 1, N,$$
(3)

где $x_f(i, j) = F_2[x(i, j)], p_f(i, j) = F_2[p(i, j)]$ – двумерные спектры X и P.

Уравнение (3) решается относительно $x_f(i, j)$. Решением, отвечающим критерию минимума дисперсии ошибки восстановления [3], является оценка $\hat{x}_f(i, j)$ комплексной величины $x_f(i, j)$, вычисляемая по формуле:

$$\hat{x}_f(i,j) = y_f(i,j) \cdot R(i,j) / a_f(i,j) \quad , i = \overline{1,M} , j = \overline{1,N} ,$$
(4)

где R(i, j) – множитель, повышающий устойчивость решения за счет подавления действия широкополосного шума $p_f(i, j)$ на высоких частотах и вычисляемый по формуле:

$$R(i,j) = |a_f(i,j)| / [|a_f(i,j)|^2 + s_p(i,j) / s_X(i,j)],$$
(5)

где $s_p(i, j)$ и $s_X(i, j)$ – значения спектральных плотностей соответственно шумового поля P и искомого поля X

Практически операции (4), (5) сводятся к умножению спектра измерений $y_f(i, j)$ на заранее вычисленную передаточную функцию $h_f(i, j)$ восстанавливающего фильтра Винера:

$$\hat{x}_{f}(i,j) = y_{f}(i,j) \cdot h_{f}(i,j), \qquad i = \overline{1,M} , \ j = \overline{1,N} ,$$

$$h_{f}(i,j) = a_{f}^{*}(i,j) / [|a_{f}(i,j)|^{2} + s_{p}(i,j) / s_{X}(i,j)], \qquad (6)$$

где учтено свойство: $|a_f(i,j)| = a_f(i,j) \cdot a_f^*(i,j)$, $a_f^*(i,j) - сопряженная комплексная величина.$

При отсутствии информации относительно $s_X(i, j)$ передаточную функцию (6) целесообразно заменить функцией вида

$$h_f(i,j) = a_f^*(i,j) / [|a_f(i,j)|^2 + c_2 \cdot \sigma_p^2 / |y_f(i,j)|],$$
(7)

где коэффициент c_2 подбирается эмпирически.

Найденная матрица оценок в спектральной области $\hat{X}_f = \{\hat{x}_f(i, j)\}, i = \overline{1, M}, j = \overline{1, N}$ подвергается обратному преобразованию Фурье:

$$\hat{X} = F_2^{-1}[\hat{X}_f] = \{\hat{x}(i,j)\}, \ i = \overline{1,M}, \ j = \overline{1,N}$$

Результатом являются оценки \hat{X} искомого поля изображения *X*, в составе которого присутствует изображение объектов.

Параметрический метод оценивания АФ

Метод основан на параметрическом описании АФ [4] и реализуется совместно с восстановлением изображения.Примером АФ может быть экспоненциальная зависимость вида:

$$\alpha(i,j) = \exp\{-\mu[i^2/\Delta_1^2 + j^2/\Delta_2^2]\}, \ \Delta_1 = 2m+1, \Delta_2 = 2n+1.$$
(8)

где оцениванию подлежит параметр μ .

Удобным критерием оптимальности при подборе параметровна *k*-м шаге восстановления изображения минимум функционала:

$$J_{k} = \sum_{i=m+1}^{M-m} \sum_{j=n+1}^{N-n} [y(i,j) - \hat{y}_{k}(i,j)]^{2}, (9)$$

где $\hat{y}_k(i,j) = \sum_{i_1=-m}^m \sum_{j_1=-n}^n \alpha_k(i_1,j_1) \hat{x}_k(i-i_1,j-j_1)$ (10)

 оценка наблюдений в виде свертки АФ с оценками изображения, которую удобно находить в частотной области:

$$\hat{y}_{f,k}(i,j) = a_{f,k}(i,j) \cdot \hat{x}_{f,k}(i,j)$$
.

Показатель (9) используется в качестве индикатора при подборе параметров AФ в следующей процедуре:

1. Для начального значения параметра $\mu = \mu_0$ вычисляется начальная функция $\alpha_0(i, j)$, например, по формуле (8).

2. Для фиксированных наблюдений y(i, j) находятся начальные оценки $\hat{x}_0(i, j)$, начальное значение J_0 показателя (9) при k=0, где $\hat{y}_0(i, j)$ – начальные оценки наблюдений, вычисляемые в соответствии с формулой (10).

3. Строится улучшающая последовательность $\{\mu_k\}, k = \overline{1, K-1}$ значений параметра μ (k – номер элемента последовательности, K – число шагов) в составе функции $\alpha_k(i, j)$ и соответствующая ей последовательность оценок $\{\hat{x}_k(i, j)\}$, приводящие к уменьшению значения показателя J_k формулы (9),причем этот процесс контролируется человеком-оператором, отдающим большее предпочтение узнаваемости (четкости) изображения объекта.

4. В общем случае в качестве n + 1 параметров АФ можно использовать значения функции b(j), j = 0,1,...,n, с элементами $b(j) = \alpha(0, j)$, j = 0,1,...,n.

Зависимость b(j) от *j* представим линейной интерполяцией как функцию переменной $\rho: b(\rho), \rho \in [0,n]$. Вращением $b(\rho), \rho \in [0,n]$ вокруг оси ДНА с учетом масштабного множителя n/m образуется поверхность АФ.

При этом начальные значения $b_0(j)$ берутся из центрального сечения ДНА. На каждом *k*-м шаге подбора последовательно меняются $b_k(j)$ в *j*-х сечениях (j = 0,1,...,n) с контролем уменьшения показателя J_k подобно методу покоординатного спуска.

Экспериментальное исследование

Параметрический метод оценивания АФ реализовывался при восстановлении изображения с помощью фильтра Винера. В таблице показано усредненное значение пока-

зателя $\sqrt{J_K}/(MN)$, где J_K определен в (9) на последней *К*-й итерации, в зависимости от параметра μ A Φ (8) при разном отношении сигнал-шум.

Таблица

μ	0,1	0,2	0,3	0,4	0,5
C-III=50	3,57	1,39	0,74	1,68	3,07
С-Ш=30	3,61	2,20	2,25	3,07	3,94

Оптимальное значение $\mu = 0,3$ в смысле минимума квадратичного показателя J_K проявлялось при большом отношении С-Ш (первая строка таблицы). С уменьшением С-Ш (вторая строка таблицы) минимум показателя смещался, и выбор правильного значения параметра μ осуществлялся визуально по четкости восстановленного изображения.

На рисунке слева направо показано: моделируемое изображение объектов; интерполированная матрица наблюдения при шаге сканирования h = 4;восстановленное изображение фильтром Винера при отношении С-Ш = 50с оценкой АФ и дополнительной пороговой обработкой.

Рис.1. Восстановление изображения объектов.

В докладе раскрываются также альтернативные методы восстановления изображений с оценкой аппаратной функции, требующие знания эталонного изображения.

Заключение

Предложенныйметод может найти применение в существующих радиометрических системахмикроволнового диапазона [5], а также в оптических системах ИК диапазона, предназначенных для обнаружения и распознавания объектов по их восстановленному изображению.

Литература

1. Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы: в 2 т. / Т. 1. М.: ИКИ РАН, 2014. 544 с.

2. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде МАТLAB. М.: Техносфера, 2006. 616 с.

3. Василенко Г.И., Тараторин А.М. Восстановление изображений. М.: Радио и связь, 1986. 304 с.

4. Клочко В.К. Восстановление изображений объектов в условиях атмосферных искажений // Вестник Рязанского государственного радиотехнического университета. № 3 (Вып. 33). 2010. С. 24 – 28.

5. Пассивная радиолокация: методы обнаружения объектов / Под ред. Р.П. Быстрова и А.В. Соколова. М.: Радиотехника. 2008. 320 с.