Дифракционные эффекты при радиопросвечивании ионосферы

А.Л. Гаврик¹, Я.А. Илюшин², Т.Ф. Копнина¹, А.А. Смыслов¹

¹Фрязинский филиал Федерального государственного бюджетного учреждения науки Института радиотехники и электроники им. В.А.Котельникова Российской академии наук,141190, г. Фрязино, Московская обл., пл. Б.А. Введенского, д.1, e-mail: <u>alg248@hotmail.com</u> ²МГУ им. М.В. Ломоносова,119992, ГСП-2, г. Москва, ilyushin@phys.msu.ru

Методом численного решения параболического уравнения дифракции выполнено моделирование поля радиоволн в эксперименте радиопросвечивания, исследованы вариации мощности и частоты сигнала, регистрируемого в процессе движения спутника по орбите вокруг Венеры.

Direct modeling of the electromagnetic field in an occultation experiment, obtained from a numeric solution of the parabolic diffraction equation, was used to investigate power and frequency variations of the signal received by a satellite as it moves on orbit around Venus.

Радиопросвечивание с помощью аппаратов (KA) космических является эффективным средством исследования ионосфер планет, оно осуществляется в тех случаях, когда излучающий сигналы КА заходит за диск планеты или выходит из-за него, а наземный пункт или другой КА регистрирует измененные плазмой сигналы. Для изучения тонкой структуры ионосферы планеты целесообразно применять радиоволны дециметрового диапазона, у которых вариации фазы при распространении в плазменной оболочке существенно больше, чем инструментальные флуктуации фазы, связанные с ограниченной стабильностью бортовой и приемной аппаратуры. Однако, необходимо учитывать, что увеличение влияния плазмы на трансформацию низкочастотного сигнала может привести к нарушению условий лучевого приближения, на котором основана интерпретация результатов радиозатмений, и неправильному определению параметров ионосферы. Целью работы является сопоставление результатов лучевых и дифракционных расчетов с экспериментальными данными КА ВЕНЕРА-15,-16, выявление критерия для оценки правомерности использования геометрической оптики при анализе данных радиопросвечивания многослойных плазменных структур в ионосфере Венеры и валидация лучевой реконструкции вертикальных профилей электронной концентрации по данным радиопросвечивания.

Методика моделирования радиопросвечивания

Рассмотрим эксперимент, в котором наземная антенна излучает высокочастотный (f₀> 900 МГц) монохроматический сигнал высокой мощности в направлении Венеры. Приемник, размещенный на борту КА, перемещается перпендикулярно направлению излучения соскоростью V=6 км/сна расстоянии L от зондируемой области. Антенна улавливает колебания радиополя $u_0(t)$, их можно представить в комплексной форме, используя понятие аналитического сигнала с амплитудой $|u_0(t)|$ и фазой $\arg[u_0(t)]$. При обработке колебаний $u_0(t)$ из фазы гетеродинированием исключают компоненту $\omega_0 t$, где t – время, ω_0 – частота излучения с длиной волны λ (ω_0 с учетом поправки на доплеровское смещение из-за взаимного движения передатчика и приемника). определить Полученный сигнал $u(t) = A(t) \exp\{i\varphi(t)\}$ позволяет квадратурные компоненты A(t) = |u(t)| и $\phi(t) = \arg[u(t)]$ с частотой дискретизации τ^{-1} и вычислить усредненные на интервале времени τ функции вариаций мощности $P(t) = |u(t)|^2$ и фазы $\phi(t) = \arg[u(t)]$ радиоволны, зондирующей ионосферу [1,2].

В рассматриваемой модели поглощение и рассеяние радиоволн отсутствует, поэтому девиация мощности P(t), регистрируемая в процессе перемещения КА, обусловлена деформацией лучевых трубок при рефракции. Изменение мощности $X(t) = P(t)/P_0$ нормировано к среднему значению мощности P_0 в отсутствии влияния исследуемой ионосферы. Изменение фазы сигнала $\varphi(t)$ при перемещении приемника на расстояние $h_0 = Vt$ обусловлено деформацией поверхности волнового фронта радиополя вследствие пространственных вариаций показателя преломления среды n(h), сквозь которую распространяется радиоволна (*h* – высота над поверхностью планеты). Приращения фаз, определяемые по квадратурным компонентам сигнала u(t) на интервале времени τ между измерениями, позволяют получить монотонную функцию $\phi(t)$ суммированиемэтих приращений, но суммирование приводит к накоплению погрешности из-запомех и затрудняет анализ мелкомасштабных флуктуаций на фоне монотонного изменения $\phi(t)$. Поэтому удобнее не суммировать приращения фазы, а вычислять частоту сигнала $f(t) = \{\arg[u(t-\tau)] - \arg[u(t+\tau)]\}/(4\pi\tau)$ по приращениям фаз. Именно частота сигнала $f(t)=(2\pi)^{-1}\cdot d\varphi(t)/dt$ связана с углом рефракции $\xi(t)=f(t) V^1\lambda$ в ионосфере, который, в свою очередь, связан интегральным соотношением с высотным профилем электронной концентрации N(h) [1-4].

Измерения осуществляются в процессе движения КА по орбите, поэтому в заданной точке пространства за время τ принимается сигнал с ограниченной энергией. Энергия такого пакета является основной величиной, определяющей реакцию приемника на сигнал и достижимую точность измерения мгновенных значений его амплитуды, фазы, частоты. В работе [5] выявлен инвариант радиозатменного эксперимента: изменение энергии сигнала, регистрируемое вдоль траектории движения спутника планеты и обусловленное сжатием или расширением лучевых пучков в сферически симметричной газовой оболочке планеты, прямо пропорционально смещению частоты сигнала, обусловленному деформацией фазового фронта радиополя. Этот инвариант не зависит от условий эксперимента при отсутствии поглощения и рассеяния радиоволн, т.е. когда процесс распространения радиоволн адиабатический, и является эвристическим принципом, который устанавливает существование связей между явлениями, взаимозависимость между которыми неочевидна. В частности, в работе [5] показано, что в эксперименте радиопросвечивания прозрачной газовой оболочки планеты, стратифицированной полем тяжести, изменение плотности потока энергии прямо пропорционально градиенту угла отклонения волнового вектора от первоначального направления, если применима геометрическая оптика и нет потерь энергии из-за поглощения или рассеяния. Эта закономерность описывается следующим соотношением $d\xi(t)/dt = [X(t)-1] VL^{-1}$, на основе которого была получена взаимосвязь между мощностью сигнала и скоростью изменения его частоты $X(t)=1+\lambda LV^2 df(t)/dt$.

Инвариант радиозатменного эксперимента и, следовательно, линейная взаимосвязь между мощностью сигнала и скоростью изменения его частоты выполняется тем точнее, чем меньше интервалы времени, на которых осуществляются измерения параметров регистрируемого сигнала [5,6]. Выявленная взаимосвязь справедлива при распространении сигнала и в атмосфере, и в ионосфере, следовательно, в процессе перемещения радиолуча из плазмы в нейтральную среду инвариант сохраняется. Теоретически установленный инвариант определяет причинно-следственную связь корреляционного анализа двух разных компонент сигнала: изменений мощности и частоты при рефракции радиоволны в системе атмосфера-ионосфера, что открывает перспективы получения новой, более точной, информации в радиозатменных экспериментах. Линейная взаимосвязь между мощностью сигнала и скоростью изменения его частоты позволяет выявлять тонкие слои при диагностике системы атмосфера-ионосфера благодаря отсутствию интегральных преобразований. Действительно, используя вариации частоты в атмосфере и в плазме, можно вычислить прогнозируемые рефракционные изменения в атмосфере и в ионосфере, а затем сравнить их с энергетическими параметрами двух когерентных радиоволн. Наличие корреляции между прогнозируемой и измеренной мощностью сигналов позволит выделить на фоне сходных по форме помех малые вариации n(h)В стратифицированных слоях, т.к. случайные флуктуации частоты сигнала и его мощности статистически независимы.

Прогнозируемые вариации $X_f(t)$, вычисленные в соответствии с инвариантом из соотношения $X_f(t)=1+\lambda LV^2 df(t)/dt$, совпадают с экспериментальной функцией изменения мощности X(t) во многих сеансах радиопросвечивания ионосферы Венеры [4,5].но не всегда. Представляется целесообразным выявить условия, при которых равенство $X(t) = X_f(t)$ нарушается из-за искажений, обусловленных появлением эффектов дифракции сигнала. На существенное влияние дифракции радиоволн в радиозатменном эксперименте впервые было обращено внимание в работе [7]. В работах [8,9] проведено моделирование радиозатменного эксперимента путем решения параболического уравнения дифракции с помощью конечно-разностной схемы Кранка-Николсона, условия сходимости которой известны и проверены на практике [8,9]. В данной работе при расчетах распределения поля также применяется прямое численное решение параболического уравнения:

$$2ik\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} + k^2 \varepsilon(x, y)u = 0.$$

Здесь координата х выделена направлением распространения первичной волны с волновым числом k; ортогональная координата у определена в плоскости, проходящей через центр планеты; проницаемость ионосферы $\varepsilon(x,y)$ входит множителем при искомой комплексной амплитуде поля и; влияние атмосферы и поверхности планеты не параболического уравнения решалась учитывается. Для краевая задача В прямоугольной полосе, ориентированной параллельно направлению поля. Рассматривалось только влияние сферически симметричной ионосферы, а влияние поверхности планеты и нейтральной атмосферы на поле исключалось. Отражения от боковых границ полосы (6050...6550 км от центра планеты) не достигают области локализации информативной части поля. На боковых границах ставилось условие идеального согласования с открытым пространством, т.е. отсутствие отражения от границ, а также второе граничное условие, согласованное с распространением невозмущенной зондирующей волны вдоль боковых границ в свободном пространстве: равенство нулю нормальной к границе производной поля u(x,y).

Принятая модель позволяет рассчитать стационарную структуру радиополя, сформированного в результате прохождения плоской волны через сферическисимметричную ионосферу планеты. Из рассчитанных квадратурных компонент радиополя определялись функции P(t) и f(t), где $t = h_0(t)/V$, которые можно сравнивать с экспериментальными данными КА ВЕНЕРА-15,-16. Реальная и мнимая компоненты поля для разных излучаемых радиоволн (λ =32, 13 и 3.6 см) вычислялись с шагом 0.25 м вдоль волнового фронта и 10...20 м в направлении распространения в пределах всей области моделирования (полоса 0 <h< 500 км, длина полосы от 3 тыс. км до 40 тыс. км).

При расчетах применяли сферически-симметричную модель ионосферы Венеры, нижняя граница ионосферы 80 км, высота ионопаузы 350 км. Если задать модель среды табличной функцией, то разрывы производной показателя преломления среды могут привести к ложным эффектам и к большим ошибкам определения параметров поля. Специфических вычислительных сложностей не возникает, когда профиль N(h) задан аналитической функцией. Поэтому в качестве вертикального профиля концентрации

электронов $N^*(h)$ использовали аналитическую аппроксимацию профиля N(h), полученного с помощью преобразования Абеля по вариациям частоты сигнала в эксперименте радиопросвечивания ионосферы Венеры 25.10.1983 г. [10]. Гладкий профиль $N^*(h)$ задавался суммой бесконечно дифференцируемых функций, формирующих слоистую структуру ионосферы Венеры, параметры которой адекватны экспериментальным данным [10].

Результаты сравнения функций $N^*(h)$ и N(h), а также функций $X_f(h)$ и X(h) представлены на рис. 1. Распределение электронной концентрации в нижней части ионосферы (кривая 2) невозможно найти традиционной методикой решения обратной задачи радиопросвечивания [11]. Нижняя граница профиля N(h) (кривая 1), полученного с использованием преобразования Абеля, находится на высоте 112 км, в то время как профиль $N^*(h)$ (кривая 2) демонстрирует наличие нижних ионизованных слоев. Указанием на существование таких слоев является высокая корреляция (~0.8) между результатами расчетов функции X(h) в лучевом приближении (кривая 3) и экспериментальной функцией $X_f(h)$ (кривая 4).

Рис. 1. Профиль N(h) (кривая 1), полученный из преобразования Абеля и профиль $N^*(h)$ (кривая 2), соответствующий экспериментальным данным: кривая 3 – результаты расчетов $X_m(h)$ в лучевом приближении по профилю $N^*(h)$, кривая 4 - экспериментальная функция $X_f(h)$, рассчитанная на основе соотношения (5), кривая 5 - экспериментальная функция X(h) рефракционного изменения мощности сигнала λ =32 см эксперименте радиопросвечивания ионосферы Венеры 25.10.1983 г.

Результаты моделирования

Выявленные тонкие плазменные слои создают условия, при которых лучевое приближение может оказаться малодостоверным. Метод численного решения параболического уравнения позволяет получить характеристики радиополя P(t) и f(t) и в области, где справедливо лучевое приближение, и в окрестности каустик, где существуют эффекты дифракции и многолучевости радиоволн. Задачей моделирования являлся анализ природы обнаруженных в эксперименте вариаций мощности сигнала [10], которые могут оказаться дифракционной картиной радиополя, а не периодической структурой тонких слоев плазмы.

Результаты расчетов вариаций фазы и частоты сигнала при разных условиях проведения эксперимента представлены на рис. 2. На рис. 2 вариации $\varphi(h)$ радиоволны λ =3.6 см при *L*=3000 км и *L*=17000 км почти совпадают (кривая 1), что обусловлено малой рефракцией. Для радиоволны λ =13 см рефракция увеличивается, но различие фаз

 $\varphi(h)$ при L=3000 км и L=17000 км (кривые 2,3) малозаметно. Угол рефракции радиоволны λ =32 см достигает величины 10⁻⁴ рад, фазовый фронт заметно искривлен, поэтому функции $\varphi(h)$ при L=3000 км (кривая 4), 11000 км (кривая 5), 23000 км (кривая 6) различаются, наибольшее различие наблюдается в областях быстрого изменения $\varphi(h)$, где искривление фазового фронта максимальное. Следует отметить, что на вариациях фазы слоистые структуры нижней ионосферы и какие-либо очевидные признаки многолучевости или дифракции практически незаметны.

Рис. 2. Вариации фазы $\phi(h)$ (слева) и частоты f(h) (справа) регистрируемых сигналов с разными длинами волн λ =3.6, 13, 32 см при значениях *L* в диапазоне от 3 10³ до 23 10³ км.

На рис. 2 также представлены вариации частоты f(h) радиоволн, при λ =3.6 см для L=3000 км и L=17000 км в данном масштабе f(h) (кривая 1) не различаются. Вследствие малой рефракции влияние периодических структур нижней ионосферы (h<120 км) на частотуf(h) незначительное, поэтому в реальном эксперименте влияние таких структур маскируется инструментальным шумом и обнаружение слоев невозможно. Для радиоволны λ=13 см рефракционные эффекты увеличиваются, появляется небольшое различие функций f(h) при L=3000 км и 17000 км (кривые 2,3), четко выделяются периодические вариации функцииf(h) при h < 120 км. Амплитуда колебаний f(h)относительно тренда частоты в нижней ионосфере составляет 0.25 Гц и такие эффекты могут быть обнаружены в эксперименте лишь при достаточно низком уровне (~0.05 Гц) инструментальных и иных случайных флуктуаций частоты. Для радиоволны λ=32 см представлены 11 функций *(h)*, для которых *L* изменяется от 3000 км до 23000 км с шагом 2000 км. В лучевом приближении значения экстремумов на функции*f*(*h*) определяются, главным образом, величиной вертикального градиента концентрации электронов и скоростью перемещения КА, поэтому изменение параметра L почти не влияет на значения экстремумов функции f(h) при L < 15000 км. На рис. 2 видно, что при L>17000 км появляется аномально сильная зависимость экстремальных значений f(h) от параметра L на высотах 112<h<135 км, это свидетельствует о нарушении лучевого приближения при распространении радиоволны λ=32 см в области нижнего максимума ионизации дневной ионосферы Венеры. При зондировании слоистых структур нижней части ионосферы (h < 112 км) аномальных искажений функции f(h) не наблюдается, т.е. нарушения лучевого приближения для L<15000 км незаметны.

По частоте радиосигнала f(h) в лучевом приближении можно определить изменение мощности $X_f(h)$. На рис. 3 представлены 9 функций $X_f(h)$, для которых L изменяется от 3000 км до 19000 км с шагом 2000 км. Вариации $X_f(h)$ в сеансах радиопросвечивания дневной ионосферы Венеры имеют качественно одинаковый характер. В верхней

ионосфере выше 200 км отклонение $X_f(h)$ от уровня 1 незначительное, при монотонном увеличении градиента электронной концентрации в процессе погружения радиолуча наблюдалось бы монотонное увеличение $X_f(h)$, но слоистые структуры вызывают колебания $X_f(h)$. Четко выраженные вариации $X_f(h)$ появляются при зондировании ионосферы Венеры ниже 200 км, где скорость изменения электронной концентрации на границах слоистых структур достигает максимальных значений, что приводит к сильному сжатию или расширению лучевых трубок и, следовательно, к значительным по величине вариациям мощности сигнала, о которых свидетельствуют экстремумы функции $X_f(h)$.

 Рис. 3.Функции X_f(h) при L от 3000
 Рис. 4. Функции X(h) при L от 3000

 до 19000 км с шагом 2000 км.
 до 23000 км с шагом 2000 км.

 Функции X_f(h) иX(h) на рис. 3 и рис. 4 при изменении L смещаются по горизонтальной оси на 5 км и по вертикальной оси на 2 единицы.

В лучевом приближении увеличение девиации $X_f(h)$ пропорционально увеличению параметра L. На рис. 3 при L=15000 км появляются искажения функции $X_f(h)$ превышающие 1%, свидетельствующие о нарушении лучевого приближения в области высот 112...135 км. При L>15000 км нарушается пропорциональность междуL и $X_f(h)$, появляются дополнительные экстремумы функции $X_f(h)$ на высотах 112...135 км, кроме того, становятся заметными искажения $X_f(h)$ в нижней ионосфере (h < 112 км) превышающие 1%. При L>19000 км аномальные флуктуации функции $X_f(h)$ ниже 140 км достигают 100%, что обусловлено дифракцией радиоволн и неприменимостью инварианта для определения рефракционного изменения мощности сигнала.

Изменение мощности X(h) радиоволны $\lambda=32$ см, полученное численным решением уравнения дифракции, представлено на рис. 4, параметр L изменяется от 3000 км до 23000 км с шагом 2000 км. При L<4000 км колебанияX(h) при h<112 км сопоставимы по величине с инструментальным шумом эксперимента (~2%), поэтому слоистые структуры трудно будет идентифицировать. Оптимальным для исследования нижней ионосферы является диапазон 5000 <L<17000 км, где вариации X(h) существенно выше уровня шума и в лучевом приближении они нарастают пропорционально увеличению

параметра *L*. При L> 17000 км появляются аномальные экстремумы функции X(h) на высотах 112...135 км превышающие 1%, но искажения X(h) в нижней ионосфере (h<112 км) незначительные.

Сравнение данных рис. 3 и 4 показало, что при L<15000 км функция X(h) совпадает с $X_f(h)$, различие меньше 0.1%. Следовательно, совпадение вариаций X(h) с вариациями $X_f(h)$ может служить критерием применимости геометрической оптики при анализе данных радиозатмений. ПриL>15000 км появляются различия между функциями X(h) и $X_f(h)$ превышающие 1%, разность $|X(h)-X_f(h)|$ увеличивается с ростом L. Расхождения между X(h) и $X_f(h)$ свидетельствуют о нарушении инварианта, следовательно, несовпадение вариаций X(h) и $X_f(h)$ и $X_f(h)$ и $X_f(h)$ и дифракции радиоволн.

Таким образом, результаты моделирования демонстрируют линейную связь между мощностью сигнала и скоростью изменения его частоты при зондировании сферически симметричной ионосферы монохроматической высокочастотной радиоволной, если выполняется лучевое приближение. Нарушение такой связи может быть обусловлено не только влиянием шума или асимметрии ионосферы, но и появлением дифракционных эффектов.

Заключение

Периодические колебания мощности сигнала (λ =32 см) в нижней ионосфере Венеры впервые были обнаружены в 2007 г. при более точной обработке данных радиозатмений КА ВЕНЕРА-15,-16 [6]. Стратифицированные слои нижней ионосферы не являются стационарными, их структура в разных сеансах разная, в отдельных сеансах формируются периодические по высоте слоистые структуры [2]. Поэтому оставались сомнения, основанные на том, что осцилляции мощности зондирующего сигнала могли отражать дифракционную структуру поля, возникшую при распространении радиоволны в среде с узкими ионизованными слоями, на границах которых градиент электронной концентрации достаточно большой. Сомнения подкреплялись тем, что аналогичные ионизованные структуры ниже 115 км не обнаруживались ни в одной миссии к Венере.

моделирования показали, вариации фазы Результаты ЧТО радиосигнала малоинформативны, т.к. на вариациях фазы слоистые структуры нижней ионосферы и какие-либо очевидные признаки многолучевости или дифракции практически незаметны. Хорошим индикатором для выявления слоистых структур в ионосфере являются вариации частоты и мощности сигнала, но дифракционные эффекты на функциях f(t) и X(t) выражены нечетко, если пересечение френелевских объемов радиолучей малое. В таких случаях элементарный критерий, основанный на сравнении размеров неоднородности с зоной Френеля, не дает однозначного ответа на вопрос о применимости геометрической оптики, т.к. диаметр зоны Френеля и размер неоднородностей среды сравнимы по величине. Оптимальным методом для анализа применимости лучевого приближения является вычисление функции $X_{\rm f}(t)$ из частотных данных, т.к. искажения на функции $X_{\rm f}(t)$ выявляются на самой ранней стадии интерференции сфокусированных радиолучей.

Совпадение функции $X_f(t)$ с X(t) наблюдалось при моделировании на разных длинах волн, когда не нарушалось лучевое приближение, что подтверждает существование инварианта радиозатменного эксперимента. Расхождения между X(t) и $X_f(t)$ превышающие 1% появлялись на ранней стадии нарушения лучевого приближения. Следовательно, несовпадение вариаций X(h) и $X_f(h)$ является надежным индикатором влияния эффектов многолучевости и дифракции радиоволн, а совпадение функций X(t)и $X_f(t)$ может являться критерием применимости инварианта для анализа данных радиозатмений. Наличие такого критерия позволяет оценивать достоверность экспериментальных результатов при решении обратной задачи радиопросвечивания.

Отсутствие дифракционных искажений функций $X_f(t)$ и X(t) в модельных расчетах при L < 12000 км подтвердило существование периодических колебаний показателя преломления венерианской ионосферы, обнаруженных по экспериментальным данным $X_f(t)$ и X(t) КА ВЕНЕРА-15,16 (кривые 4,5 на рис. 1). Выполненный анализ результатов моделирования указал на применимость лучевого приближения при радиозатмениях КА ВЕНЕРА-15,16 и, следовательно, на достоверность формирования многослойного высотного профиля электронной концентрации, представленного на рис. 1 (кривая 2). Не исключено, что такие периодические колебания электронной концентрации могут быть следствием распространения волновыхвозмущений из нижних слоев атмосферы до ионосферных высот.

Работа выполнена при частичной поддержке программы № 9 Президиума РАН и гранта РФФИ №15-45-03266.

Литература

1. Гаврик А.Л., Гаврик Ю.А., Копнина Т.Ф. О возможности увеличения чувствительности метода радиопросвечивания// Журнал радиоэлектроники 2011 №5 С.3.

2. Гаврик А.Л., Гаврик Ю.А., Копнина Т.Ф., Самознаев Л.Н. Вариации амплитуд и частот когерентных радиосигналов при просвечивании дневной ионосферы Венеры // Радиотехника и электроника. 2010. Т. 55. № 3. С. 277-284.

3. Kliore A.J., Levy G.S. et.al. Atmosphere and ionosphere of Venus from the Mariner 5 Sband radio occultation measurements // Science. 1967. V. 158. № 3809. P. 1683-1688.

4. Яковлев О.И. Распространение радиоволн в космосе. М.: Наука. 1985. 214 с.

5. А.Л. Гаврик, Ю.А. Гаврик, Т.Ф. Копнина, Е.А. Кулешов. Осцилляции вблизи нижней границы ионосферы Венеры по радиозатменным данным спутников "Венера-15",-16" // Радиотехника и электроника. 2013. Т. 58. № 10. С. 1013-1024.

6. Гаврик А.Л., Павельев А.Г., Гаврик Ю.А. Обнаружение ионосферных слоев в дневной ионосфере Венеры на высотах 80-120 км по результатам двухчастотного радиопросвечивания КА Венера-15,-16 // Солнечно-земная физика 2008 №12 Т.2. С.203.

7. Karayel, T.E., Hinson, D.P. Sub-fresnelscalere solution in atmospheric profiles from radiooccultation // RadioScience. 1997. V. 32. P. 411–423.

8. IlyushinYa.A. Fluctuations of the GPS signals on the tangential path sinth elower terrestrial atmosphere: in fluence of the small-scale structure // Journal of Atmospheric and Solar-Terrestrial Physics.2008. V. 70. P. 1863-1869.

9. Илюшин Я.А., Захаров В.И. Влияние нерегулярных структур нижней атмосферы на распространение сигналов глобальных спутниковых радионавигационных систем // Радиотехника. 2009. № 3. С.84-91.

10. Я.А. Илюшин и др. Решение параболического уравнения дифракции при радиопросвечивании ионосферных слоев // Журнал радиоэлектроники. 2013 №11 С. 2.

11. Гаврик А.Л., Самознаев Л.Н. Особенности дневной ионосферы Венеры в годы низкой и высокой активности Солнца //Космические исследования 1987 Т.25 №2 С.285.