II Всероссийская научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - «Муром 2018»

Дистанционное зондирование облачного покрова фемтосекундным лидаром

П.А. Бабушкин

Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН). 634055, Россия, г. Томск, площадь Академика Зуева, 1. bpa@iao.ru

В работе представлены качественные результаты дистанционного зондирования облачного покрова над Академгородком, Томск фемтосекундным лидаром. Проведено уточнение некоторых параметров уравнения лазерного зондирования для фемтосекундного лидара с учетом отличительных особенностей эффектов самовоздействия.

A qualitative results of clouds remote sensing above Akademgorodok, Tomsk by femtosecond lidar are presented in the paper. A some parameters of lidar equation for femtesocond lidar with considering the distinctive features of self-action effects were clarify.

Введение

Роль облаков в жизнедеятельности человека огромна. Они участвуют в процессе круговорота воды в природе, радиационных процессах Земля – атмосфера. И, несмотря на громадные успехи технического развития, хозяйственная деятельность человечества находится под заметным влиянием климатических условий, которые формируются благодаря облакам.

Наравне с облаками важным фактором, влияющим на хозяйственную деятельность и здоровье человека, является наличие в атмосфере аэрозоля. Присутствующие в атмосфере аэрозоли различной формы, размера и происхождения могут выступать в качестве ядер конденсации или оледенения в облаках.

Наличие аэрозоля в атмосфере неизбежно, но увеличение его концентрации может зависеть как от естественных процессов (выветривание, извержение вулканов и прочее), так и от процессов антропогенного характера, что в свете последних десятилетий становится все более актуальной проблемой.

Атмосферный аэрозоль (АА) принимает участие в инсоляции Земной поверхности благодаря поглощению и рассеянию солнечного излучения. В связи с этим увеличение концентрации АА может способствовать развитию как похолодания, так и потепления [1].

В настоящее время активно ведутся исследования возможностей применения тераваттного излучения фемтосекундных лазеров в задачах зондирования АА. Фемтосекундный лазер становится перспективным инструментом [2] для изучения состава и свойств атмосферы, что можно объяснить наличием нелинейных эффектов при распространении его излучения, которые расширяют возможности диагностики исследуемого объекта. Важным звеном исследований взаимодействия тераваттного импульсного излучения с аэрозольно-газовой атмосферой является изучение нелинейных атмосферно-оптических эффектов.

Основная часть

Дистанционное зондирование с помощью фемтосекундного излучения привлекательно тем, что в процессе распространения, излучение, взаимодействуя с аэрозольно-газовой средой, вызывает такие эффекты, как самофокусировка, филаментация, генерация излучения конической эмиссии суперконтинуума (СК). Благодаря генерации излучения СК, которое представляет собой сверхуширение частотного спектра в стоксову и антистоксову области, появляется принципиально новая возможность увеличения информативности многочастотного дистанционного лазерного зондирования АА. Источником излучения СК является филамент, который рождается в результате преобладания Керровской нелинейности над остальными видами нелинейности.

Формирование сигналов обратного рассеяния в режиме многочастотного зондирования излучением СК не удовлетворяет линейному уравнению лазерной локации, что затрудняет его решение.

Приведем здесь обычное уравнение лазерного зондирования для однократного рассеяния

$$P(z) = P_0 \frac{A_0}{z^2} \xi \beta_{\pi}(z) G(z) \frac{c \tau_{\text{H}}}{2} T^2(z), \qquad (1)$$

где P_0 - исходная мощность лазерного излучения; $\frac{A_0}{Z^2}$ - телесный угол, в котором осуществляется прием сигналов оптической системой;

ξ- коэффициент пропускания оптических элементов лидарной системы;

 $\beta_{\pi}(z) = \frac{\sigma}{4\pi} \chi_{\pi}(z)$ - объемный коэффициент обратного рассеяния; σ - коэффициент рассеяния; $\chi_{\pi}(z)$ - относительное угловое распределение света, рассеянного единичным объемом взвешенных в воздухе частиц в направлении назад - индикатриса рассеяния для угла 180;

G(z) - геометрический фактор лидара;

 $\tau_{\rm u}$ – длительность импульса;

с – скорость света;

 $T^{2}(z) = exp(-2\int_{0}^{z} \alpha(z) dz)$ - интегральное пропускание; $\alpha(z)$ - коэффициент ослабления атмосферы для лазерной длины волны.

Рассматривая дистанционное зондирование излучением СК, стоит перейти к системе уравнений лазерного зондирования, записанных для каждой из длин волн СК. Тогда, в самом простейшем виде, уравнение зондирования СК будет записано, как уравнение многочастотного зондирования, описанное в [3]

$$P(z,\lambda_i) = P_0(\lambda_i) \frac{A_0}{z^2} \xi(\lambda_i) \beta_{\pi} G(z,\lambda_i) \frac{c\tau_{\scriptscriptstyle \rm H}}{2} T^2(z,\lambda_i), \qquad (2)$$

где $P_0(\lambda_i)$ – исходная мощность излучения на длине волны суперконтинуума; $\frac{A_0}{z^2}$ – телесный угол, в котором осуществляется прием оптической системой излучения обратного рассеянного от суперконтинуума;

 $\xi(\lambda_i)$ – коэффициент пропускания оптических элементов лидарной системы на длинах волн суперконтинуума;

 β_{π} – объемный коэффициент обратного рассеяния; $G(z, \lambda_i)$ – геометрический фактор лидара в зависимости от длины волны суперконтинуума;

 $\tau_{\rm M}$ – длительность импульса;

c – скорость света;

C = скорость света, $T^2(z, \lambda_i) = exp(-2\int_0^Z \alpha(z, \lambda_i) dz)$ – интегральное пропускание для спектра суперконтинуума;

 $\alpha(z, \lambda_i)$ - коэффициент ослабления атмосферы для длин волн суперконтинуума.

Тем не менее, это уравнение необходимо доопределить относительно особенностей формирования и распространения филамента и самого излучения СК.

При составлении УЛЗ для СК необходимо учесть распределение мощности излучения по спектру СК, а именно в излучении из зоны филаментации (по направлению распространения) всего лишь несколько процентов составляет излучение конической эмиссии СК (в видимой области спектра). На видимую область спектра СК приходится порядка 2÷3%, а на ИК область 4÷5%. По результатам эксперимента [4] (рис.1) порядка 93% энергии СК (включая лазерные длины волн) сконцентрировано в приосевой части импульса.

Рис. 1. Спектр излучения СК в филаментированном импульсе [4].

На основании данных эксперимента [4] распределение интенсивности при генерации СК следующее: 0,4 мкм – 0,001 $P_{\mu_{3\pi}}$; 0,5 мкм – 0,02 $P_{\mu_{3\pi}}$; 0,55 мкм – 0,04 $P_{\mu_{3\pi}}$; 1,1 мкм – 0,012 $P_{\mu_{3\pi}}$ (*E*=20 мДж; τ =40фс; $P_{\mu_{3\pi}}$ =0,5TBT).

В коротковолновой части спектра можно выделить локальные максимумы, соответствующие кольцевой структуре конической эмиссии СК. Часть коротковолнового излучения СК распределяется в виде конусов по правилу: чем короче длина волны, тем больше угол при вершине конуса - коническая эмиссия СК (КЭ СК).

Филамент формируется на некотором расстоянии от системы, что требует сделать поправку в УЛЗ на расстояние самофокусировки. Для этого воспользуемся формулой Марбургера [5], которая была получена на основе большого числа экспериментов и позволяет оценить положение точки филаментации

$$Z_{\phi} = \frac{2L_R 0,367}{\sqrt{\left(\sqrt{\eta} - 0,852\right)^2 - 0,0219}},\tag{2}$$

где $L_{\rm R} = k \frac{a_0^2}{2}$ –дифракционная длина исходного пучка; $\mathfrak{g} = \frac{P_{\rm изл}}{P_{\rm кp}}$ – безразмерная величина; k – волновое число, $k = \frac{2\pi}{\lambda}$; a_0 - радиус пучка; $P_{\rm изл}$ – мощность лазерного излучения; $P_{\rm кp} = \frac{3.77\lambda^2}{(8\pi n_0 n_2)}$ - критическая мощность для гауссова пучка. Участок самофокусировки исключается из рассмотрения, так как зондируемое излучение распространяется и рассеивается, соответственно, не от самой системы, а на некотором расстоянии. На этом основании, в уравнении лазерного зондирования переобозначим переменную z, как $R=z-Z_{\phi}$.

На рис. 2 приведена схема фемтосекундного лидарного стенда, с помощью которого проводилось зондирование облачности под углом 30° над городом Томск в марте 2017 года. Использовались такие параметры системы как, $\tau_0=40\cdot10^{-15}$ с; $E_0=20\cdot10^{-3}$ Дж; $a_0=1,25\cdot10^{-2}$ м, участок самофокусировки по нашим оценкам составляет 48 м.

Рис. 2. Блок схема фемтосекундного лидара.

В качестве источника излучения использована фемтосекундная лазерная система состоящая из лазера накачки регенеративного усилителя Lotis LS-2131M, лазера накачки многопроходового усилителя SOLAR-LQ829, котораяпредназначена для генерации и усиления фемтосекундных лазерных импульсов длительностью 25-55 фс и энергией (5÷100)·10⁻³ Дж на длине волны λ =800±50 нм и частотой повторения импульса f_{пов.им}=10 Гц.

Выходное излучение для передачи в атмосферу направлено через поворотное зеркало на поворотное зеркало телескопа. Телескоп системы Ньютона с фокусным расстоянием 80 см и диаметром главного зеркала 30 см. Схема зондирования коаксиальная. Выбор коаксиальной схемы зондирования обеспечил исключение участка самофокусировки, который характеризуется излучением обратного рассеяния высокой интенсивности, который может привести к порче приемной оптики. Для регистрации интересующих стоксового и антистоксового частей спектра, относительно основной длины волны, поставлен фильтр СЗС 23 и ФЭУ 62.

На рис. 3 приведены запись лидарных сигналов обратного рассеяния на лазерной λ_{π} и длинах волн СК λ_{CK} . Излучение обратного рассеяния, представленное черным графиком, содержит в себе не только лазерную длину волны λ =800±50 нм, но и спектр длин волн суперконтинуума, который в антистоксовой и стоксовой части спектра относительно лазерной длины волны простирается до УФ и ИК соответственно.

Рис. 3. Запись сигнала обратного рассеяния при зондировании фемтосекундным лидаром.

Легко убедиться в том, черной кривой представлена запись сигнала обратного рассеяния на длинах волн $\lambda_{n}+\lambda_{CK}$, посмотрев на красный график, который представляет собой запись того же сигнала, но через фильтр C3C 23, который активно пропускает излучение на длинах волн 300 ÷ 750 нм и 1000 ÷ 2000 нм, не пропуская излучение на основной длине волны лазера 800±50 нм. Выделенная на рисунке синим прямоугольником область также дает наглядное представление об успешном подавлении лазерной длины волны, так как при сравнении сигналов с этих участков мы можем говорить об отсутствии вклада в процесс рассеяния на лазерной длине волны.

Приведенные лидарные сигналы позволяют говорить о наличии на высотах 750 ÷ 1400 м слоисто-кучевой облачности (St), высота основания которой 0,5 – 1,5 км. Протяженность слоя 0,2 – 0,8 км. На участке 1400 ÷ 1650 м возможно также наличие слоисто-кучевой облачности кучевообразного развития, что можно объяснить большей оптической плотностью чем в предыдущем случае.

Заключение

Как известно, одночастотные лидары способны дать лишь качественную информацию об исследуемом объекте. Используя несколько длин волн – многочастное зондирование появляется возможность расширить диапазон получаемой информации об АА.

На основе фемтосекундных лазерных систем продолжают создаваться новые методы исследования окружающей среды, атмосферы. В связи с этим остается актуальной проблема реализации метода многочастотного лазерного зондирования на основе таких явлений как, самофокусировка, филаментация и генерация конической эмиссии СК, которые одновременно позволяют реализовать источник излучения СК и перемещать его вдоль трассы зондирования в определенных значениях.

Уточнение параметров УЛЗ для фемтосекундного лидара и развитие метода многочастотного зондирования на длинах волн СК есть дальнейшая цель работы автора.

Литература

1. Будыко М.И. Климат в прошлом и будущем. Ленинград.:Гидрометеоиздат. 1980. 352 с.

2. Кандидов В.П., Шленов С.А., Силаева Е.П., Дергачев А.А. Филаментация мощного фемтосекундного лазерного излучения в воздухе и ее приложения в атмосферной оптике // Оптика атмосферы и океана. 23, № 10. 2010. С. 873-884

3. Зуев В.Е., Наац И.Э. Обратные задачи лазерного зондирования атмосферы. Новосибирск: Наука, 1982. - 242 с.

4. BabushkinP.A., BurnashovA.V., IglakovaA.N. and others. Some results of the ropagation of the high-power terawatt femtosecond laser radiation in different media // *Proc. SPIE* 9810, International Conference on Atomic and Molecular Pulsed Lasers XII, 98100K (December 15, 2015); doi:10.1117/12.2224928.

5. MarburgerJ.H. Self-focusing: Theory // Progress in Quantum Electronics. 1975. Vol. 4. No. 01.P. 35-110.