Метод непосредственного измерения рассеянной мощности в радиочастотных безэховых камерах при вертикальной поляризации

Д.С. Кравченко

МИРЭА - Российский технологический университет, 119454 г. Москва, проспект Вернадского, дом 78, Booty1@yandex.ru

Введение

Радиочастотные безэховые камеры используются для построения диаграмм направленности излучения антенн, изучения электромагнитной совместимости, построения диаграмм ЭПР и др. Измерения могут проводиться на полноразмерных объектах, включая самолёты, либо на уменьшенных моделях (с соответствующим уменьшением длины волны излучения радара).

Стационарные БЭК имеют уровень безэховости до –40 дБ в диапазоне частот от 1 ГГц до 40 ГГц. Экранирование от внешних воздействий обеспечивает затухание электромагнитной энергии 60 - 120 дБ в диапазоне частот от 10 КГц до 100 ГГц.

Для определения качества БЭК введены следующие радиотехнические характеристики: коэффициент безэховости К $_6$ и «кажущаяся» ЭПР s_к.

Основной радиотехнической характеристикой безэховой камеры является коэффициент безэховости K_6 , определяемый во всем рабочем диапазоне и во всей безэховой зоне БЭК. Напомним, что безэховой зоной БЭК называется объем, в любой точке которого K_6 меньше заданного значения.

Коэффициентом безэховости K_6 называется отношение потока мощности, рассеянного камерой P_{pac} , к потоку мощности, пришедшему от излучателя, P_{nag} в заданной точке безэховой зоны БЭК и определяется, как правило, по следующей формуле:

$$K_6 = 10 lg(P_{pacc}/P_{nag}) \tag{1}$$

Коэффициент безэховости БЭК определяется по «наихудшему» его значению к безэховой зоне.

В настоящее время для испытаний БЭК разработаны следующие методы: непосредственного измерения рассеянной мощности; перемещающегося индикатора (метод КСВ); наложения диаграмм направленности приемной антенны и свипгенератора (метод генератора качающейся частоты); двух приемных антенн; измерений «кажущейся» ЭПР БЭК.

Метод непосредственного измерения рассеянной мощности является наиболее простым и оперативным, но его точность зависит от диаграммы направленности индикаторной антенны, выбранной для измерений. Для реализации метода требуются приемные антенны, имеющие малые боковые и задние лепестки диаграммы направленности. Для удовлетворительных измерений эти лепестки должны быть на 25, 30 дБ меньше, чем измеряемый коэффициента безэховости.

1. Постановка задачи

Падающую на прямоугольник, плоскую электромагнитную \vec{E}^i - поляризованную волну с произвольной линейной поляризацией представим в виде:

$$\vec{E}^{i} = \vec{E}_{0z}^{i} \cdot e^{ik_{i} \cdot (x\cos\alpha + y\cos\beta + z\cos\gamma), \ (k_{i} = \left|\vec{k}_{i}\right| = k)}$$
(1.1)

где $\vec{E}_{0,7}^{l}$ - амплитудное значение волны,

 $cosa, cos\beta, cos\gamma$ - направляющие косинусы волнового вектора падающей волны \vec{E}^i комплексная амплитуда волны (рис 1).

Рис.1. Геометрия задачи.

На рис. 1 ABCD - рассеивающая площадка, R – расстояние от 0 до точки наблюденияР, $\vec{k_i}$ – волновой вектор падающей волны, γ – угол падения, φ – угол наблюдения, P(x,y,z) – точка наблюдения, \vec{E}_{y_1} – вектор электрического поля, ψ – угол между вектором \vec{E} и осью X, ϑ – угол между R и осью Z.

Рассмотрим дифракцию волны, электрический вектор которой лежит в плоскости четырехугольника.

Для электрической компоненты полного поля вблизи поверхности имеем:

$$E_{y1} = E_{0y1} \cdot e^{ik \cdot (x\cos\alpha + y\cos\beta + z\cos\gamma)} + R^e \cdot E_{0y1} \cdot e^{ik \cdot (x\cos\alpha + y\cos\beta - z\cos\gamma)}$$
(1.2)

где $E_{0y1} \cdot e^{ik \cdot (x\cos\alpha + y\cos\beta + z\cos\gamma)}$ $(k_i = |\vec{k}_i| = k)$ – падающая волна и $E_{0y1} \cdot e^{ik \cdot (x\cos\alpha + y\cos\beta - z\cos\gamma)}$ $(k_i = |\vec{k}_i| = k)$ – отраженная волна

R^e – комплексный коэффициент отражения

Компоненты магнитного поля в системе координат x, y, z имеют вид:

$$E_x = E_{y1} \cdot \cos\psi; \quad E_y = E_{y1} \cdot \sin\psi; \quad E_z = 0$$
(1.3)

так, как вектор Е лежит в плоскости х0у.

Компоненты магнитного поля найдем с помощью первого уравнения Максвелла для гармонических волн.

$$\operatorname{rot} \vec{E} = ik\mu\vec{H} \qquad \vec{H} = \frac{1}{ik}\operatorname{rot} \vec{E}$$
(1.4)

На рис. 2 изображены графики зависимости коэффициента безэховости и его аргумента от угла падения у. Из рисунка видно, что имеет место экстремум (на рис 2 а), а также минимум коэффициента безэховости при у, приближающегося к 90°.

Рис.2. Графики угловых зависимостей коэффициента отражения (модулей и фаз *КО* для 300 (I) сантиметровых волн).

2. Расчетные формулы

$$E_{\chi} = ik \frac{e^{iKK}}{R} \cdot \left[Q_{p}^{e}(\vartheta, \varphi) \cdot \sin \vartheta \sin \varphi + Q_{m}^{e}(\vartheta, \varphi) \cdot \cos \vartheta \cdot (\cos \psi - \sin^{2} \vartheta \cdot \cos \varphi \cdot \cos(\psi + \varphi)) \right]$$
(1.5)

$$E_{y} = -ik \frac{e^{ikR}}{R} \cdot \left[Q_{p}^{e}(\vartheta, \varphi) \cdot \sin \vartheta \sin \varphi - Q_{m}^{e}(\vartheta, \varphi) \cdot \cos \vartheta \cdot (\sin \psi + \sin^{2} \vartheta \cdot \sin \varphi \cdot \cos(\psi + \varphi)) \right]$$
(1.6)

$$E_{z} = ik \frac{e^{ikR}}{R} \cdot \left[Q_{p}^{e}(\vartheta, \varphi) \cdot \cos(\psi + \varphi) \cdot \sin \vartheta \cdot (1 + \cos \gamma \cdot \cos \vartheta) \right]$$
(1.7)

3. Результаты численных расчетов

По формулам (1.5 – 1.7) проведены численные расчёты. Значения РПМ для «болото» с $\lambda = 300$ см, комплексным коэффициентом отражения R^e, фазой φ и расчетными данными, приведены в таблицах 2, 3 и 4, а значения модуля КО на рис 2а и 26, соответственно, при размерах четырехугольника, а = 1500 см, b = 800 см, и расстоянии R от 0 до точки наблюдения, равном 120 см.

Ориентация плоскости падения волны на прямоугольник определяется углами $\psi = \pi/2$, $\varphi = 0$. Направление падения волны определяется направляющими косинусами соs α , соs β , и соs γ относительно осей координат *x*,*y*,*z*. В случае падения волны в плоскости X0Z, где $\alpha = \pi/2 - \gamma$; $\beta = \pi/2$; для угла облучения $\gamma = 60^{\circ}$.

Расчеты приводились для полупространства $0 < \vartheta < \pi$.

	R^e (РПМ-I) $\lambda = 300$ см											
№	γ	dB	a	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	Ехрпм	
	'		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)	-			мВт/м	
1	60	-9	1500	800	100	0,355	0,126	3,62	0,354	0,001	37,349	
No	γ	dB	a	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	dBx _{рпм}	
•	'		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)					
1	60	-9	1500	800	100	0,355	0,126	3,62	0,354	0,001	31,446	

Таблица 2

Таблица 3

R^e (РПМ-I) $\lambda = 300$ см											
№	γ	dB	a	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	Еурпм
	'		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				мВт/м
1	60	-9	1500	800	100	0,355	0,126	3,62	0,354	0,001	55,331
N⁰	γ	dB	a	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	dBy _{рпм}
	•		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				
1	60	-9	1500	800	100	0,355	0,126	3,62	0,354	0,001	34,859

Таблица 4

	\mathbf{R}^{e} (РПМ-І) $\lambda = 300$ см										
N⁰	γ	dB	а	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	Ez _{рпм}
	•		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				мВт/м
1	60	-9	1500	800	100	0,355	0,126	3,62	0,354	0,001	46,636
N⁰	γ	dB	a	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	dBz _{piim}
	'		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				
1	60	-9	1500	800	100	0,355	0,126	3,62	0,354	0,001	33,374

4. Диаграммы рассеяния электромагнитных волн при E - поляризации для $\lambda=300\ \text{см}$

Компонента E_{χ}

Рис.3. Диаграммы для $\gamma = 60^{\circ}$

Компонента Е у

Рис.4. Диаграммы для $\gamma = 60^{\circ}$.

Компонента E_{Z}

$$\psi = \frac{\pi}{2}; \ \varphi = \frac{\pi}{2}; \ \beta = \frac{\pi}{2} - \gamma$$

Рис.5. Диаграммы для $\gamma = 60^{\circ}$.

5. Анализ результатов

Полученные результаты исследования позволяют сделать следующие выводы:

1. Уровень мощности рассеяния от плоских поверхностей БЭК вне главных максимумов, соответствующих рассеянию в направлениях проходящей и зеркально - отраженной волн, составляет – (20÷40) дБ.

2. При приближении к указанным направлениям уровень мощности рассеяния повышается до –(0÷10) дБ, что требует конструктивных решений БЭК, исключающих возникновение зеркально отраженных волн в рабочем объеме БЭК, в котором помещают исследуемый объект.

Заключение

В данных тезисах проработана методика учета отражений радиоволн от стенок БЭК при использовании конкретных конструкционных материалов, в частности, при покрытии стенок радиопоглощающим материалом «болото», для компонент E_x , E_y и E_z . Проанализировано влияние этих отражений на коэффициент безэховости БЭК. Полученные результаты расчетов могут быть использованы при разработке новых видов БЭК и при проектировании рабочих мест в безэховых камерах, а также могут быть применены при выборе радиочастот источников излучения, используемых при измерении диаграмм направленности РЭС, при определении диаграмм ЭПР в БЭК и др.

Как следует из таблиц 2, 3 и 4 наихудшим значением мощности отражённого сигнала является -9 дБ для λ = 300 см, что соответствует K_6 = -9 дБ для λ = 300 см. Такое значение K_6 недостаточно, а это означает, что надо облицовывать стенки БЭК другим, более эффективным РПМ.

Литература

1. Мицмахер М. Ю. Качество современных безэховых камер и радиопоглощающие материалы. — В сб.: Антенны/Под ред. А. А. Пистолькорса. М.: Связь, 1980, вып. 28, с. 147—164.

2. Buckley E. F. Microwave Reflectivity Measurement — Theory and Practice. — Electronic Design (Microwaves), 1962, March 15, p. 12—19.

3. Buckley E. F. Design Evaluation and Performance Modern Microwave Anechoic Chambers for Antenna Measurements, — Elecronic Components, 1965, v. 6, N 12, p. 1119—1126.

4. Emerson and Cuming Inc. «Free Space Microwave Absorbers».

5. Love A. W. The Diagonal Horn Antenna, Electromagnetic Horn Antennas, — IEEE Press. Edited by A. W. Lowe, 1976.

6.Dybdal R. B. Horn Antenna Sidelobe Reduction Using Absorber Tunnels, — AP-S International Symposium, 1977, p. 324—327.