Всероссийская открытая научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - «Муром 2019»

Метод непосредственного измерения рассеянной мощности в радиочастотной безэховой камере при ее вертикальной поляризации и отрицательном угле падения волны

Д.С. Кравченко

РТУ МИРЭА, г. Москва Booty1@yandex.ru

Рассмотрен метод учета рассеянной мощност от стенки БЭК для отрицательного угла падения волны при ее вертикальной поляризации с применением конкретного конструкционного материала, в частности, при покрытии стенок БЭК радиопоглощающим материалом «болото».

Введение

Радиочастотные безэховые камеры (БЭК) используются для построения диаграмм направленности (ДН) излучения антенн, изучения электромагнитной совместимости, построения диаграмм эффективной поверхности рассеяния (ЭПР) и др. Измерения могут проводиться на полноразмерных объектах или на уменьшенных моделях (с соответствующим изменением длины волны – λ излучения радара). Стационарные БЭК имеют уровень безэховости до (-40) дБ в диапазоне частот (1 – 40) ГГц. Экранирование от внешних воздействий обеспечивает затухание электромагнитной энергии (60 – 120) дБ в диапазоне (10 - 100) ГГц.

Основными качественными показателями БЭК являются коэффициент безэховости - K_{δ} , определяемый отношением потока мощности - P_{pac} , рассеиваемого камерой, к потоку мощности от излучателя - P_{nad} ,

$$\mathbf{K}_6 = 10 \log(\mathbf{P}_{\text{pacc}}/\mathbf{P}_{\text{nag.}}),\tag{1}$$

а также «кажущаяся» ЭПР - S_{κ} . Коэффициент K_{δ} , определяется во всем рабочем диапазоне частот БЭК и во всей ее безэховой зоне - пространстве, в любой точке которого K_{δ} меньше заданного значения. Коэффициент K_{δ} устанавливается по «наихудшему» его значению к безэховой зоне.

Метод непосредственного измерения рассеянной мощности является наиболее простым и оперативным, но его точность зависит от выбранной ДН индикаторной антенны. Реализация метода требует приемной антенны с малым уровнем боковых и задних лепестков ДН. Удовлетворительные измерения получаются, когда эти лепестки меньше измеряемого коэффициента K_6 на (25 – 30) дБ. Так, для измерений коэффициента K_6 уровня (—40) дБ требуется антенна, у которой боковые и задние лепестки диаграммы меньше (— 65, — 70) дБ. В настоящее время известны типы антенн, у которых ДН имеют малые лепестки. Это «диагональные» рупорные антенны, покрытые радиопоглощающими материалами (РПМ) и ребристые рупорные антенны.

В таблице 1 представлены некоторые РПМ и их свойства, которыми облицовывают стенки безэховых камер для проводимых исследований радиолокационной и радионавигационной аппаратуры.

No	Материал	Тип,	Диапазон	Коэффициент	Толщина,	Macca
		марка	длин волн, см.	отражения, - дБ	MM.	1м², кг
1	Резиновые коврики	B2Φ - 2	0,8 - 4	15 - 20	19 – 30	4 - 5
2	Магнитодиэлектри-	XB - 0,8	0,8	15 - 20	1 – 3	3 – 10
	ческие пластины					
3	Поглощающие					
	покрытия на основе	«Болото»	0,8 - 100	15 - 20	—	_
	поролона					
4	Ферритовые	СВЧ-0,68	15 - 200	14 – 15	4 - 20	20-70
	пластины					

Таблица 1 - Некоторые типы радиопоглощающих материалов

1. Постановка задачи

Падающую на прямоугольник, плоскую электромагнитную \vec{E}^i - поляризованную волну с произвольной линейной поляризацией представим в виде:

$$\vec{E}^{i} = \vec{E}_{0z}^{i} \cdot e^{ik_{i} \cdot (x\cos\alpha + y\cos\beta + z\cos\gamma), \ (k_{i} = \left|\vec{k}_{i}\right| = k)}$$
(1.1)

где \vec{E}_{0z}^{i} - амплитудное значение волны, *cosa*, *cosβ*, *cosγ* - направляющие косинусы волнового вектора падающей волны \vec{E}^{i} - комплексная амплитуда волны (рис 1).

Рис.1. Геометрическое построение процесса облучения стенки БЭК

На рис. 1.: ABCD - рассеивающая площадка, R – расстояние от 0 до точки наблюденияP, $\vec{k_i}$ – волновой вектор падающей волны, γ – угол падения, φ – угол наблюдения, P(x,y,z) – точка наблюдения, \vec{E}_{y_1} – вектор электрического поля, ψ – угол между вектором \vec{E} и осью X, 9 – угол между R и осью Z.

Рассмотрим дифракцию волны с электрическим вектором, лежащим в плоскости четырехугольника.

Для электрической компоненты полного поля вблизи поверхности имеем:

$$E_{y1} = E_{0y1} \cdot e^{ik \cdot (x\cos\alpha + y\cos\beta + z\cos\gamma)} + R^{e} \cdot E_{0y1} \cdot e^{ik \cdot (x\cos\alpha + y\cos\beta - z\cos\gamma)}, \quad (1.2)$$

где $\mathbb{E}_{0y1} \cdot e^{ik \cdot (\mathbf{x} \cos \alpha + \mathbf{y} \cos \beta + \mathbf{z} \cos \gamma)}$ $(k_i = |\vec{k}_i| = k)$ - падающая волна, $\mathbb{E}_{0y1} \cdot e^{ik \cdot (\mathbf{x} \cos \alpha + \mathbf{y} \cos \beta - \mathbf{z} \cos \gamma)}$ $(k_i = |\vec{k}_i| = k)$ - отраженная волна,

 R^e - комплексный коэффициент отражения.

Компоненты магнитного поля в системе координат (x, y, z) соответственно равны:

$$E_x = E_{y1} \cdot \cos\psi; \quad E_y = E_{y1} \cdot \sin\psi; \quad E_z = 0 \tag{1.3}$$

т. к. вектор Е лежит в плоскости х0у.

Компоненты магнитного поля найдем с помощью первого уравнения Максвелла для гармонических волн:

$$\operatorname{rot} \vec{E} = ik \,\mu \vec{H} \qquad \vec{H} = \frac{1}{ik} \operatorname{rot} \vec{E} \tag{1.4}$$

На рисунке 2 изображены графики угловых зависимостей коэффициента безэховости K_5 и его аргумента от угла падения γ , а на рисунке 3 модуль фазы. Из рисунка 2 видно, что имеет место экстремум, а также минимум K_5 при γ , близком к 90°.

Рис.2. Графики угловых зависимостей коэффициента безэховости

80° 90

2. Расчетные формулы

$$E_{\chi} = ik \frac{e^{iKR}}{R} \cdot \left[\mathcal{Q}_{p}^{e}(\vartheta, \varphi) \cdot \sin\vartheta \sin\varphi + \mathcal{Q}_{m}^{e}(\vartheta, \varphi) \cdot \cos\vartheta \cdot (\cos\psi - \sin^{2}\vartheta \cdot \cos\varphi \cdot \cos(\psi + \varphi)) \right]^{2}$$
(1.5)

$$E_{y} = -ik \frac{e^{iKK}}{R} \cdot \left[Q_{p}^{e}(\vartheta, \varphi) \cdot \sin\vartheta \sin\varphi - Q_{m}^{e}(\vartheta, \varphi) \cdot \cos\vartheta \cdot (\sin\psi + \sin^{2}\vartheta \cdot \sin\varphi \cdot \cos(\psi + \varphi)) \right]^{*} (1.6)$$

$$E_{z} = ik \frac{e^{ikR}}{R} \cdot \left[Q_{p}^{e}(\vartheta, \varphi) \cdot \cos(\psi + \varphi) \cdot \sin \vartheta \cdot (1 + \cos \gamma \cdot \cos \vartheta) \right]^{2}.$$
(1.7)

3. Результаты численных расчетов

Значения РПМ для «болото» при $\lambda = 100$ см, с комплексным коэффициентом отражения R^e, фазой ф и расчетными данными, приведены в таблицах 2, 3 и 4 соответственно, при размерах четырехугольника - a = 1500 см, b = 800 см, и расстоянии R от 0 до точки наблюдения, равном 120 см.

Ориентация плоскости падения волны на прямоугольник задается углами $\psi = \pi/2$ и $\phi = \pi/2$. Направление падения волны задается направляющими косинусами соз α , соз β , и соз γ относительно осей координат (*x*,*y*,*z*). В случае падения волны в плоскости X0Z, где $\alpha = \pi/2$; $\beta = \pi/2 - \gamma$; для угла облучения $\gamma = -60^{\circ}$.

Таблица	2 -	Компонента	E

1

-60

_9

	Таб	лица	2 - Ко	мпоне	ента E _x	$\psi = \frac{\pi}{2}; \varphi =$	$=\frac{\pi}{2}; \beta=\frac{\pi}{2}$	-γ.			
	R^{e} (РПМ-I) $\lambda = 100$ см										
№	ν ^o	дБ	а	b	f	Модуль КО	Мощность	φ	$R^e(V^e)$	$\operatorname{Im}(V^{e})$	Ex _{рпм}
	Y		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				мВт/м
1	-60	-9	1500	800	300	0,355	0,126	3,62	0,354	0,001	5,591*10
No	ν ^o	дБ	а	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	дБх _{рпм}
51-	1		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				

0.355

Таблица 3 - Компонента Еу

1500

800

300

π	π	π
$\psi = -; \varphi =$	$-; \beta =$	γ
2	2	2

0,126

3,62

0,354

0,001

*10-4

- 65,05

	R^e (РПМ-I) $\lambda = 100$ см										
№	vo	дБ	а	b	f	Модуль КО	Мощность	φ	$R^e(V^e)$	$\operatorname{Im}(V^{e})$	Еурпм
	1		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				мВт/м
1	-60	-9	1500	800	300	0,355	0,126	3,62	0,354	0,001	1,799*10 ⁻³
No	γ ⁰	дБ	а	b	f	Модуль КО	Мощность	φ	$R^e(V^e)$	$\operatorname{Im}(V^{e})$	дБу _{рпм}
•	1		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				
1	-60	-9	1500	800	300	0,355	0,126	3,62	0,354	0,001	- 54,901

Таблица 4 - Компонента Е_z

 $\psi = \frac{\pi}{2}; \ \varphi = \frac{\pi}{2}; \ \beta = \frac{\pi}{2} - \gamma$

	$R^e (P\Pi M-I) \lambda = 100 cM$										
№	vo	дБ	а	b	f	Модуль КО	Мощность	φ	$R^e(V^e)$	$\operatorname{Im}(V^{e})$	Ez _{рпм}
	r		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				мВт/м
1	-60	-9	1500	800	300	0,355	0,126	3,62	0,354	0,001	2,797*10-4
No	ν ^o	дБ	а	b	f	Модуль КО	Мощность	φ	$R^{e}(V^{e})$	$\operatorname{Im}(V^{e})$	дБz _{рпм}
•	,		(см)	(см)	(МГц)	(в отн. ед.)	(в отн. ед.)				
1	-60	-9	1500	800	300	0,355	0,126	3,62	0,354	0,001	-71,066

4. Диаграммы рассеяния электромагнитных волн при отрицательном угле падения волны для λ = 100 см

Диаграммы рассеяний в случае падения волны в плоскость X0Z при углах $\alpha = \pi/2$; $\beta = \pi/2 - \gamma$ для компонент $E_x E_y$ и E_z отраженной от стенки БЭК плоской электромагнитной волны при отрицательном угле облучения $\gamma = -60^{\circ}$ и $\lambda = 100$ см по напряженности электромагнитного поля приведены на рисунках 4 – 6 (a), и амплитуде приведены на рисунках 4 – 6 (б).

Рис.4. Диаграмма рассеяния электромагнитной волны на четырехугольнике по мощности электромагнитного поля (а) и амплитуде (б) для γ = - 60°

Рис.5. Диаграмма рассеяния электромагнитной волны на четырехугольнике по мощности электромагнитного поля (а) и амплитуде (б) для γ = - 60°

Рис.6. Диаграмма рассеяния электромагнитной волны на четырехугольнике по мощности электромагнитного поля (а) и амплитуде (б) для γ = - 60°

5. Анализ результатов

Анализ результатов исследования показал, что:

1) Значение мощности отражённого сигнала при – 9 дБ при λ = 100 см является наихудшим;

2) Полученное значение K_6 недостаточно, поэтому необходимо стенки БЭК облицовывать другим, более эффективным РПМ, либо использовать методы (для решения соответствующих задач), позволяющие уменьшить рассеяние ЭМВ стенками БЭК.

Заключение

Проработана методика учета отражений радиоволны от стенок БЭК при ее вертикальной поляризации для отрицательного угла падения волны на четырехугольник, с применением конкретного конструкционного материала, в частности, для покрытия стенок БЭК радиопоглощающим материалом «болото» с использованием компонент Ex, Ey и Ez. В связи с этим решение задач дифракции, каковой является рассмотренная в настоящей работе задача, является актуальной и представляет интерес для специалистов, занимающихся радиолокационными исследованиями с использованием БЭК.

Литература

1. П.Я. Уфимцев Метод краевых волн в физической теории дифракции // М.: Советское радио, 1962. – 244 с.

2. П.Я. Уфимцев Дифракция на черных телах и на полупрозрачных пластинах // Известия вузов. Радиофизика. – 1968. – Т. XI, № 6. – С.1867–1869.

3. Д.С. Кравченко, А.К. Черепанов Дифракция плоской электромагнитной волны на непрозрачном прямоугольнике с заданным эффективным комплексным коэффициентом отражения, при Е – поляризации падающей волны // VI Всероссийская научная конференция «Радиофизические методы в дистанционном зондировании». – Муром, 2014. – С. 272–277.