Всероссийская открытая научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - «Муром 2019»

Математическое моделирование вращения вектора поляризации в ионосферной плазме

Ю.И. Бова¹, А.С. Крюковский^{1,2}, Б.Г. Кутуза², Д.С. Лукин^{1,2}

АНО ВО «Российский Новый Университет», Москва, ул. Радио, д.22 ФБГУН «Институт Радиотехники и электроники им. В.А.Котельникова РАН», Москва, ул. Моховая 11, корп. 7. julia_bova@mail.ru, kryukovsky56@yandex.ru, kutuza@cplire.ru, luknet1@yandex.ru

Изучены особенности влияния ионосферы Земли на распространение радиоволн *P*диапазона. Рассмотрены однослоевая и двухслоевая модели ионосферы, содержащие и не содержащие крупномасштабные неоднородности плазмы. Учтена кривизна среды распространения. Получены оценки величин угла фарадеевского вращения и набега фазы для различных моделей.

The features of the influence of the Earth's ionosphere on the propagation of P-band radio waves are studied. Single-layer and two-layer models of the ionosphere, containing and not containing large-scale plasma inhomogeneities, are considered. The curvature of the propagation medium is taken into account. The estimates of the Faraday rotation angle and phase shift for different models are obtained.

Введение

Настоящая работа посвящена численному моделированию вращения вектора поляризации в ионосферной плазме на радиоволны Р-диапазона (430 МГц). Актуальность работы связана с проектированием в целях радиолокации космических антенн с синтезированной [1], а также с проблемами восстановления профиля электронной концентрации ионосферной плазмы методами радиотомографии [2].

В работах [3-5] рассмотрено влияние ионосферы на величину угла фарадеевского вращения и на набег фазы без учета влияния кривизны Земли. В настоящей работе рассмотрены сферические модели ионосферы и учтены возможные крупномасштабные неоднородности плазмы на пути распространения радиосигнала.

В работе рассмотрены четыре модели, которые до некоторой степени согласованы с моделью дневной (12 час) ионосферной плазмы относительно точки с координатами 40 град с.ш., 30 град в.д. (рис.1), а именно:

экспоненциальная модель;

двухслоевая модель;

 двухслоевая модель с локальной неоднородностью с повышенной электронной концентрацией;

 двухслоевая модель с локальной неоднородностью с пониженной электронной концентрацией,

которые в дальнейшем мы будем обозначать как модели 1, 2, 3 и 4 соответственно.

Зеленым на рис. 1 обозначена поверхность Земли. Серым цветом показано распределение электронов в ионосфере. Более тёмные области соответствуют более высокой электронной концентрации. На рис. 2 показана зависимость электронной концентрации от высоты для точки наблюдения с координатой *x*= 700 км, относительной которой проведены все дальнейшие расчеты.

Распределение электронной концентрации (серый цвет) в ионосфере. Экспоненциальная модель – а; двухслоевая модель – б; двухслоевая модель с локальной неоднородностью с повышенной электронной концентрацией – в; двухслоевая модель с локальной неоднородностью с пониженной электронной концентрацией – г. Здесь и на других рисунках представлена модель 1 - черным цветом, модель 2 зеленым, модель 3 – красным; модель 4 – синим.

Для определения лучевых траекторий по аналогии с работами [4, 5] используем бихарактеристическую систему [6-7]. Введем обозначения: \vec{k} – волновой вектор, $\vec{r} = (x, y, z)$ – координаты точки наблюдения, $\omega = 2\pi f$ – круговая частота излучения, f – рабочая частота, t – групповое время, τ – параметр вдоль лучевой траектории, $\varepsilon(\vec{r}, \vec{k}, \omega)$ – эффективная диэлектрическая проницаемость среды распространения (см. также [8-10]). Учитывая, что рабочая частота в данной задаче много больше плазменной ω_p , можно считать, что

Рис.2 Зависимость электронной концентрации от высоты вдоль оси z.

В выражении (1) e – заряд электрона, m_e – масса электрона, N – величина электронной концентрации в фиксированной точке пространства. Будем считать, что начальный волновой вектор $\vec{k}(0)$ параметрически зависит от угла выхода луча α_0 .

На рис. З показаны лучевые траектории в плоскости (*x*,*z*). Предполагается, что источник излучения точечный расположен на расстоянии 400 км от поверхности Земли и перемещается. При этом угол наклона лучей меняется от 150 до 30 градусов относительно положительного направления горизонтальной оси. Приёмник расположен на поверхности Земли на расстоянии x_p =700 км от начала координат как показано на рисунке. На рисунке выделены только те траектории, которые приходят в точку наблюдения.

На рис. 4 приведена зависимость группового времени от координаты *x* источника излучения. Зависимость квазипараболическая.

Визуально кривая, представленная на рис.4, одинакова для всех 4-х моделей, поскольку отличия во временных задержках невелики.

Рассмотрим зависимость относительной скорости изменения фазы от высоты (рис. 5). Производная фазы по групповому времени определяется формулой:

$$\Phi'_{o}(t) = \frac{dx}{dt}k_{x}(t) + \frac{dy}{dt}k_{y}(t) + \frac{dz}{dt}k_{z}(t) - \omega = \Phi'(t) - \omega$$
(2)

Минимумы кривой коррелируют с положениями максимумов ионосферных слоёв. Локальный максимум соответствует межслоевой долине. На рис. 5 а мы видим один минимум, что соответствует однослоевой модели 1. На рис. 5 б, соответствующем двухслоевой модели 2, внизу появляется дополнительный минимум, происхождение которого объясняется слоем Е, и максимум, который соответствует межслоевой долине. В моделях 3 и 4 в районе главного максимума электронной концентрации расположена неоднородность с повышенной или пониженной электронной концентрацией. Поэтому на рис. 5 в и 5 г возникают характерные выбросы на лучах проходящих эти неоднородности (салатовый цвет).

Рис.3 Лучевые траектории на фоне профиля электронной концентрации ионосферы.

Рис.4 Зависимость группового времени t от координаты x выхода луча

На рис. 6 показана зависимость отклонения фазы (отложена по горизонтали) от группового времени (отложено по вертикали) в точке приема сигнала. Для вычисления фазы применялась формула:

$$\Phi(t) = \int_{0}^{t} \Phi'(\eta) d\eta \,. \tag{3}$$

Зависимость скорости изменения фазы от высоты; а – модель 1, б – модель 2; в – модель 3; г – модель 4.

Разность фаз $\Delta \Phi$ находилась как $\Delta \Phi = \Phi - \omega R/c$. Здесь $\omega R/c$ – фаза луча в пустоте вдоль прямой, соединяющей источник и приёмник. В случае модели 1 зависимость линейная, причем ионосфера вносит существенный вклад в величину фазы. Если модель двухслоевая (модель 2), кривая перестает прямой линией. Возникают небольшие отклонения, определяемые слоем Е (зелёный цвет). В случае возмущённых моделей возникают петли на конце линии, лежащие по разные стороны от невозмущённой линии.

Зависимость отклонения фазы от горизонтальной координаты *x*, соответствующей координате выход луча, представлена на рис. 7. Форма кривой для модели 1 это

квазипарабола (чёрный цвет). Для модели 2 кривая претерпевает небольшую деформацию (помимо сдвига). Наконец для возмущенных моделей на кривой образуется либо дополнительное возвышение (в случае возмущения с пониженной электронной концентрацией – модель 4), либо небольшой провал (в случае возмущения с повышенной электронной концентрацией – модель 3).

Рис. 6

Зависимость отклонения фазы $\Delta \Phi$ (по отношению к фазе в невозмущенной среде) от группового времени *t*.

Рис.7 Зависимость разности фаз ∆Ф (по отношению к невозмущенной среде) от расстояния по горизонтали *x*.

Рассмотрим фарадеевское вращение плоскости поляризации, считая, что обыкновенная и необыкновенная волны в высокочастотном диапазоне распространяются вдоль одной и той же лучевой траектории. Согласно [3-5, 11, 12] угол фарадеевского вращения определяется формулой:

$$\Omega(t) = \frac{\omega}{2c} \int_{0}^{t} \Delta \mu \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt , \qquad (4)$$

в которой введено обозначение

$$\Delta \mu \simeq \frac{1}{2} \frac{v \sqrt{u^2 \sin^4 \theta + 4(1-v)^2 u \cos^2 \theta}}{(1-v)(1-u \cos^2 \theta) - u \sin^2 \theta}.$$
(5)

 $\Delta \mu$ это разность показателей преломления обыкновенной и необыкновенной волны, а параметр *и* это отношение квадрата гирочастоты к квадрату круговой частоты:

$$u = (\omega_H / \omega)^2 = e^2 H_0^2 / (m_e^2 c^2 \omega^2).$$
 (6)

Угол θ это угол между вектором напряженности внешнего магнитного поля \vec{H}_0 и волновым вектором \vec{k} . В квазиизотропной среде можно приблизительно считать, что

$$\Omega(t) = 0.5 \omega \int_{0}^{t} \Delta \mu \sqrt{\varepsilon(\vec{r}(t))} dt.$$
(7)

В приведённых ниже расчетах амплитуда магнитного поля предполагается постоянной, а ориентация напряжённости магнитного поля относительно локальной системы координат задается углами γ и ϕ [3-5]: $H_0 = 0.465 \ \exists, \gamma = -57^\circ, \phi = 90^\circ$.

Зависимости разности $\Delta\mu$ показателей преломления обыкновенной и необыкновенной волны от высоты вдоль приведены на рис. 8. Видно, что форма кривой отслеживает профиль электронной концентрации (ср. рис. 2 и рис. 8). Отметим, что в возмущенном случае (рис. 8 в и 8 г) поведение части лучевых траекторий салатового цвета отклоняется от общей тенденции, характерной для других лучей: Для модели 3 ими образован главный максимум, который вытягивается, а для модели 4 эти лучи образуют минимум на фоне других лучей.

Зависимость разности показателей преломления обыкновенной и необыкновенной волны от высоты вдоль лучей; а – модель 1, б – модель 2; в – модель 3; г – модель 4.

На рис. 9 показана зависимость угла фарадеевского вращения Ω от группового времени. Следует отметить, что слой Е практически не сказывается на гладкости кривой (ср. черную линию (модель 1) и зелёную линию (модель 2)). Но локальные возмущения максимума слоя (модели 3 и 4) приводят к существенным отклонениям – своеобразным выбросам в разные стороны от зелёной кривой.

Рис. 9 Зависимость угла фарадеевского вращения Ω от группового времени *t*.

На рис. 10 показана зависимость угла фарадеевского вращения от координаты *х*. Невозмущенные кривые ведут себя как гладкие параболы, и влияние слоя Е сказывается слабо (черная и зеленая кривые). Возмущения приводят к отклонениям от зеленой кривой, причем в отличие от рис. 7, область с повышенной электронной концентрацией теперь создаёт максимум (красная линия), а с пониженной – минимум.

Рис. 10. Зависимость угла фарадеевского вращения Ω от расстояния по горизонтали *x*.

Заключение

Таким образом, в работе методом бихарактеристик рассмотрены особенности влияния ионосферы Земли на распространение высокочастотных радиоволн Рдиапазона. Сопоставлены четыре модели: однослоевая модель ионосферы без возмущений, двухслоевая модели ионосферы без возмущений, двухслоевая модель с локальным образованием с повышенной электронной концентрацией в окрестности максимума F-слоя, двухслоевая модель с локальным образованием с пониженной электронной концентрацией в окрестности максимума F-слоя. Исследованы величины набега фазы за счет влияния ионосферы и угла фарадеевского вращения.

Работа выполнена при поддержке РФФИ (гранты № 18-02-00544-а, №17-02-01183-а).

Литература

1. Kutuza B.G., Kalinkevitch .A.A., Ephimov A.I., Vostrov E.A., Dzenkevitch A.B. Application of SAR Operating at P-band for Space Experiments // EUSAR'96: Proceedings. Germany, Konigswinter, 1996. P. 309-313.

2. Андреева Е.С., Крюковский А.С., Куницын В.Е., Лукин Д.С., Растягаев Д.В., Кирьянова К.С. Моделирование лучевой и каустической структуры электромагнитных полей по данным радиотомографии ионосферы в окрестности экваториальной аномалии. // «Распространение радиоволн», сб.докл. XXIII Всероссийской научной конференции. (23–26.05.2011; Йошкар-Ола) /Йошкар-Ола: Марийский государственный технический университет, 2011. Т.3 С. 288-291.

3. Kutuza B.G., Bova Yu.Ig., Kryukovsky A.S., Stasevich V.Ig. Features of the Influence of the Earth's Ionosphere on the P-Band Propagation // The 12th European Conference on Synthetic Aperture Radar - EUSAR 2018, Aachen, Germany on June 4-7, 2018.

4. Бова Ю.И., Крюковский А.С., Кутуза Б.Г., Лукин Д.С., Стасевич В.И. Исследование влияния ионосферы на распространение электромагнитных волн Рдиапазона // Физические основы приборостроения. 2018. Т. 7. № 1 (27). С. 54-61.

5. Крюковский А.С., Кутуза Б.Г., Бова Ю.И. Исследование влияния ионосферы земли на распространение радиоволн Р-диапазона // Вестник Российского нового

университета. Серия: Сложные системы: модели, анализ и управление. 2017. № 2. С. 7-12.

6. Казанцев А.Н., Лукин Д.С., Спиридонов Ю.Г. Метод исследования распространения радиоволн в неоднородной магнитоактивной ионосфере. // Космические исследования, 1967. Т. 5. Вып. 4. С. 593–600.

7. Крюковский А.С., Лукин Д.С., Кирьянова К.С. Метод расширенной бихарактеристической системы при моделировании распространения радиоволн в ионосферной плазме. // Радиотехника и электроника, М.: Наука. 2012. Т.57. № 9. С. 1028-1034.

8. Крюковский А. С., Лукин Д. С., Растягаев Д. В., Скворцова Ю. И. Математическое моделирование распространения частотно-модулированных радиоволн в ионосферной плазме // Радиотехника и электроника, 2015, Т. 60, № 10. С. 1001-1009.

9. Бова Ю.И., Крюковский А.С., Лукин Д.С. Моделирование распространения частотно-модулированного излучения в анизотропной ионосферной плазме // Электромагнитные волны и электронные системы. 2017. Т. 22. № 5. С. 4-11.

10. Крюковский А.С., Скворцова Ю.И. Математическое моделирование распространения радиоволн в нестационарной плазме с учетом кривизны поверхности Земли и ионосферных слоёв // Вестник Российского нового университета. Серия: Сложные системы: модели, анализ и управление. 2016. № 1-2. С. 34-40.

11. Дэвис К. Радиоволны в ионосфере. М.: Мир, 1973. 502 с.

12. Кутуза Б.Г., Мошков А.В. Влияние фарадеевского вращения плоскости поляризации в ионосфере при измерении их космоса радиоизлучения поверхности океана. // Исследование Земли из космоса. 1988. № 5. С. 94-98.