Всероссийская открытая научная конференция «Современные проблемы дистанционного зондирования, радиолокации, распространения и дифракции волн» - Муром 2022

УДК 621.396.969

DOI: 10.24412/2304-0297-2022-1-413-421

Точность восстановления абсолютной фазы при интерферометрической обработке радиолокационных данных дистанционного зондирования Земли

А.В. Сосновский¹, В.Г. Коберниченко¹

¹ Уральский федеральный университет имени первого Президента России Б.Н. Ельцина 620002, г. Екатеринбург, ул. Мира, 19. *E-mail: <u>sav83@e1.ru</u>*

Описана методика исследования точности восстановления абсолютной фазы при интерферометрической обработке данных радиолокационных систем дистанционного зондирования Земли. Приведены результаты экспериментальной оценки точности восстановления абсолютной фазы для радиолокационных данных L-диапазона при использовании различных алгоритмов развертывания интерферометрической фазы. Ключевые слова: радиолокаторы с синтезированной апертурой, интерферометрическая обработка, подавление фазового шума, развертывание фазы

Accuracy of absolute phase recovery after the interferometric processing of the radar remote sensing of the Earth data

A.V. Sosnovsky¹, V.G. Kobernichenko¹

¹ Ural Federal University.

A method for accuracy estimation of absolute phase recovery after the interferometric data processing in radio-electronic remote sensing of the Earth systems is proposed. The results of an experimental accuracy estimation of absolute phase recovery for L-band radar data using various algorithms for the interferometric phase unwrapping are presented.

Keywords: synthesized aperture radars, InSAR processing, phase noise filtration, phase unwrapping

Введение

Одной из тенденций развития современных космических радиолокационных систем дистанционного зондирования Земли (РЭС ДЗЗ) стало широкое применение интерферометрической обработки данных (InSAR/DInSAR) для получения информации о рельефе местности и его изменениях. Метод космической радиолокационной интерферометрии сочетает в себе высокую точность фазовых методов измерения дальности с высокой разрешающей способностью космических радиолокаторов с синтезированной апертурой (РСА), что позволяет получать детальные цифровые модели рельефа (ЦМР, карты высот) по многократным радиолокационным наблюдениям [1-4]. Вместе с тем, широкое распространение этой технологии затрудняется сложностью интерферометрической обработки, на отдельных этапах которой используются разнообразные эмпирические алгоритмы и методы, а также неоднозначность выводов относительно точности получаемого результата и ее зависимости от конкретного набора использованных при обработке алгоритмов.

Целью интерферометрической обработки является получение интерферограммы абсолютной фазы, вид которой определяется рельефом подстилающей поверхности, а масштаб значений – условиями съемки. Технологическая цепочка интерферометрической обработки при получении цифровой модели рельефа из двух комплексных радиолокационных изображений (КРЛИ) представлена на рис. 1-А. Наиболее сложными и критически важными ее этапами являются подавление

(фильтрация) фазового шума и развертывание фазы. Последнее позволяет получить абсолютную фазу, вид которой приближенно связан с формой рельефа h(m,n) следующим образом:

$$h(m,n) \approx \frac{\lambda R_1(m,n)\sin\theta_0(m,n)}{4\pi B_1(m,n)} \hat{\Psi}(m,n) , \qquad (1)$$

где λ – длина волны зондирующего сигнала, θ_0 – угол бокового обзора РСА, R_1 – наклонная дальность, и В₁ – нормальная составляющая интерферометрической базы, $\hat{\Psi}$ – восстановленная после интерферометрической обработки абсолютная фаза, (*m*,*n*) – координаты элемента КРЛИ (рис. 1-Б,В). Все элементы выражения (1) должны быть вычислены с исключительно высокой точностью [3-4], для космических систем недостижимой, поэтому, как правило, для преобразования практически интерферограммы абсолютной фазы в карту высот используются наземные радиолокационные ориентиры, имеющие известные высокоточные координаты и хорошо опознаваемые на амплитудном радиолокационном изображении.

Рис. 1. Интерферометрическая съемка и интерферометрическая обработка: А) последовательность интерферометрической обработки; Б,В) геометрические соотношения при интерферометрической съемке

Факторы, влияющие на точность восстановления абсолютной фазы

Различные авторы и разработчики систем предлагают разные подходы к учету и классификации источников ошибок. Так, в [5] предлагается классификация, отталкивающаяся от способов борьбы с источниками ошибок. В частности, выделяются:

- случайные ошибки – шумы интерферометрической фазы, которые могут быть снижены путём фильтрации или усреднения, но не могут быть исправлены с помощью наземных радиолокационных ориентиров (опорных точек привязки);

- геометрические искажения (дисторсии), к которым отнесены ошибки позиционирования КА по высоте и углу крена, исправляемые с использованием двух опорных точек, ошибки измерения базы и ошибки синхронизации (атмосферные задержки), которые могут быть исправлены по трем опорным точкам;

- ошибки позиционирования КА вдоль азимута, которые также могут быть исправлены по трем опорным точкам.

Влияние ошибок измерения геометрических параметров системы (в первую очередь – длины интерферометрической базы) подробно рассматривается в [3, 4], где также отмечается, что их коррекция для обеспечения приемлемой точности цифровой модели рельефа возможна только при использовании радиолокационных ориентиров.

Классификация случайных ошибок предложена в [4], и она сводится к оценке влияния различных источников декорреляции КРЛИ на точность восстановленной абсолютной фазы. Рассматриваются следующие источники декорреляции:

- геометрическая декорреляция, вызванная различием углов визирования в вертикальной плоскости;

- доплеровская декорреляция, вызванная различием углов визирования при первой и второй съемках;

- объёмная декорреляция, вызванная влиянием пространственно-распределенных объектов (как правило – лесная растительность);

- шумовая декорреляция;

- временная декорреляция, присущая интерферометрическим системам с повторным проходом и вызванная изменением отражающих свойств поверхностей за время между съемками;

- остаточная декорреляция при взаимопривязке двух КРЛИ.

При этом в указанных классификациях отдельно отмечаются ошибки разрешения фазовой неоднозначности, которые могут существенно понизить точность получаемого результата [2-4]. Основными причинами появления фазовых неоднозначностей являются фазовый шум и эффект наложения рельефа, являющийся следствием равнодальностной проекции КРЛИ вдоль одной из координат. Борьба с такими ошибками требует совершенствования методов развёртывания интерферометрической фазы, направленного на уменьшение относительной доли областей интерферограммы восстановленной абсолютной фазы, остающихся поврежденными после раскрытия неоднозначности («артефактов развертывания»). Обнаружение таких фазовой поврежденных областей и оценка их влияния на точность восстановления абсолютной фазы и, в конечном итоге, – на точность получаемой цифровой модели рельефа, могут осуществляться путем сравнения ЦМР, полученной после интерферометрической обработки, и эталонной ЦМР с последующим вычислением их среднеквадратичного отклонения. Однако такой подход, применяемый в большинстве исследований по оценке точности результатов интерферометрической съемки, затрудняет исследование эффективности разрабатываемых алгоритмов развертывания фазы и/или подбора оптимальных параметров алгоритмов развертывания фазы и подавления фазового шума из-за необходимости завершения всей процедуры обработки перед получением количественного результата.

Предложенная авторами настоящей работы в [6, 7] методика исследования точности восстановления абсолютной фазы, основана на обратном геокодировании эталонной ЦМР. Ее применение не требует полного завершения всей процедуры интерферометрической обработки перед оценкой точности и делает возможным

автоматизированный перебор алгоритмов обработки с варьированием их параметров для поиска оптимальных сочетаний, обеспечивающих наилучшую точность результата.

Методика оценивания точности

Суть методики заключается в обратном преобразовании координат эталонных высотных отметок из географической системы координат в систему координат «азимут – наклонная дальность» первого комплексного радиолокационного изображения (КРЛИ-1) из интерферометрической пары и вычислении параметров связи восстановленных абсолютных фаз, соответствующих положениям эталонных отметок, и эталонных высот с помощью метода наименьших квадратов [6]. Для реализации методики используются наборы значений координат и высот эталонных высотных отметок, получаемых с топографических карт или навигационных измерений.

Учитывая приближенно линейную связь абсолютных фаз и высот рельефа (1) и полагая геометрические параметры выражения (1) неизвестными, составим линейные выражения связи эталонных высот и абсолютных фаз:

$$\Psi_{0i} = \hat{U}_H H_{0i} + \hat{U}_m m_i + \hat{U}_n n_i + \overline{\Psi}_0, \qquad (2)$$

$$\hat{H}_i = \hat{V}_{\Psi} \hat{\Psi}_i + \hat{V}_m m_i + \hat{V}_n n_i + \overline{H}$$
(3)

где $\hat{U}_{H}, \hat{U}_{m}, \hat{U}_{n}$ – оценки коэффициентов масштабного искажения высот и углов перекоса фазы вдоль координат *m* и *n*; $\hat{V}_{\Psi}, \hat{V}_{m}, \hat{V}_{n}$ – оценки коэффициентов масштабного искажения фаз и углов перекоса высот вдоль координат *m* и *n*, $\overline{\Psi}_{0}$ – оценка среднего значения эталонной фазы, \overline{H} – оценка среднего значения измеренной высоты, *i* – номер эталонной высотной отметки. Уравнение (2) позволяет получить эталонные значения абсолютных фаз для их последующего сравнения с абсолютными фазами, полученными при съемке, уравнение (3) позволяет получить значения измеренных системой съемки высот для их сравнения с эталонными высотами. Экспериментальный расчет коэффициентов $\hat{U}_{H}, \hat{U}_{m}, \hat{U}_{n}$ и/или $\hat{V}_{\Psi}, \hat{V}_{m}, \hat{V}_{n}$ целесообразно произвести, решая переопределенные системы уравнений (5) и (6) методом наименьших квадратов:

$$\begin{pmatrix} \hat{U}_{H} \\ \hat{U}_{m} \\ \hat{U}_{n} \\ \bar{\Psi}_{0} \end{pmatrix} = \begin{pmatrix} H_{01} & \bar{m}_{1} & \bar{n}_{1} & 1 \\ H_{02} & \bar{m}_{2} & \bar{n}_{2} & 1 \\ \dots & \dots & \dots & \dots \\ H_{0N} & \bar{m}_{N} & \bar{n}_{N} & 1 \end{pmatrix}^{-1} \times \begin{pmatrix} \hat{\Psi}_{1} \\ \hat{\Psi}_{2} \\ \dots \\ \hat{\Psi}_{N} \end{pmatrix},$$

$$\begin{pmatrix} \hat{V}_{H} \\ \hat{V}_{m} \\ \hat{V}_{n} \\ \bar{W}_{N} \end{pmatrix} = \begin{pmatrix} \hat{\Psi}_{1} & \bar{m}_{1} & \bar{n}_{1} & 1 \\ \hat{\Psi}_{2} & \bar{m}_{2} & \bar{n}_{2} & 1 \\ \dots & \dots & \dots \\ \hat{\Psi}_{N} & \bar{m}_{N} & \bar{n}_{N} & 1 \end{pmatrix}^{-1} \times \begin{pmatrix} H_{01} \\ H_{02} \\ \dots \\ H_{0N} \end{pmatrix},$$

$$(4)$$

где N – размер массива эталонных высотных отметок. Для оценивания результатов космической съемки целесообразно в выражениях (4,5) учесть также квадратичные составляющие набега фазы, введя слагаемые, зависящие от m^2 , n^2 и $m \cdot n$:

 \hat{U}_{m2} , \hat{U}_{n2} , \hat{U}_{mn} и \hat{V}_{m2} , \hat{V}_{n2} , \hat{V}_{mn} , соответственно, матрицы в этих уравнениях будут иметь размерность $N \times 7$. Такой способ преобразования позволяет устранять систематическую ошибку абсолютной фазы аналогично тому, как это происходит при ее геокодировании в ходе процедуры интерферометрической обработки. Результаты дальнейшего оценивания будут адекватны тем, что будут получены при оценивании точности цифровой модели рельефа в географической системе координат с той лишь разницей, что в них не будет присутствовать составляющая ошибки, обусловленная самой процедурой геокодирования абсолютной фазы.

Используя рассчитанные оценки коэффициентов (4,5) в формулах (2,3) и получив наборы измеренных высот и эталонных абсолютных фаз, можно реализовать оценивание точности по критериям среднеквадратичного отклонения высот – σ_H , среднеквадратичного отклонения абсолютных фаз – σ_{Ψ} , а также среднеквадратичного отклонения отклонения абсолютных фаз – σ_{Ψ} , а также среднеквадратичного отклонения разностного фазового угла – $\sigma_{\delta\phi}$ [7], который удобно использовать для оценки эффективности подавления фазового шума.

Таким образом, методика оценивания точности, основанная на преобразованиях (2-5), включает следующие этапы:

- подготовка данных: отбор элементов набора эталонных высот, попадающих в границы сцены, предварительная интерферометрическая обработка для получения интерферограммы относительной фазы (подавление фазового шума гауссовым фильтром с частотой среза, примерно равной ширине спектра интерферограммы, развертывание фазы любым из стандартных алгоритмов), выборка из полученной интерферограммы абсолютной фазы значений, соответствующих положениям эталонных высотных отметок;

- вычисление параметров обратного преобразования $\hat{V}_{\Psi}, \hat{V}_{m}, \hat{V}_{n}, \hat{V}_{m2}, \hat{V}_{n2}, \hat{V}_{mn}$ (для оценивания точности определения высот σ_{H}) или $\hat{U}_{H}, \hat{U}_{m}, \hat{U}_{n}, \hat{U}_{m2}, \hat{U}_{n2}, \hat{U}_{mn}$ (для оценивания точности определения фаз σ_{Ψ} и разностно-фазового угла $\sigma_{\delta\phi}$)

- интерферометрическая обработка (подавление фазового шума, развертывание фазы) с использованием различных алгоритмов, изменение их параметров и получение характеристик σ_H и/или σ_{Ψ} ($\sigma_{\delta 0}$).

- *анализ полученных результатов* для определения алгоритмов, обеспечивающих минимальное значение с.к.о. абсолютной фазы / абсолютной высоты.

Изложенная методика позволяет получить заключения о предельной точности цифровой модели рельефа (без учета искажений, вносимых при геокодировании восстановленной абсолютной фазы) и об оптимальном значении параметров алгоритмов подавления фазового шума и/или алгоритмов развертывания фазы.

Эксперимент

Методика применялась для оценивания эффективности интерферометрической обработки радиолокационных данных *L*-диапазона ALOS PALSAR (1280 МГц). Радиоволны этого частотного диапазона в меньшей степени (по сравнению с радиоволнами С- и Х-диапазонов, также широко используемым в РЭС ДЗЗ) подвержены объемному рассеянию на крупной растительности, что позволяет получать более стабильные интерференционные картины при многократных радиолокационных наблюдениях.

Исследуемые радиолокационные данные представлены четырьмя сценами – интерферометрическими парами КРЛИ различных тестовых участков. Характеристики

сцен и условий съемки представлены в таблице 1. Все снимки получены при горизонтальной поляризации электромагнитной волны зондирующего сигнала (у одной сцены прием осуществлялся на кросс-поляризации – ГВ), в летний сезон, временной интервал между съемками – 46 дней. Эталонные высотные отметки рельефа тестовых участков получены из цифровых топографических карт масштаба 1:100 000. в количестве не менее 1400 на сцену и равномерно ее покрывают. Отметки имеют вертикальную точность не хуже 1 м и горизонтальную (плановую) – не хуже 30 м, что с учетом межэлементного некогерентного накопления при обработке кадров составляет не более 1-2 элементов разрешения.

Рис 2. Фрагмент амплитудного радиолокационного изображения (сцена № 1) с нанесенными эталонными высотными отметками (*) и наземными радиолокационными ориентирами (◊) (А), интерферограмма сцены (Б)

В качестве исследуемых алгоритмов интерферометрической обработки использовались двумерный гауссов фильтр для подавления фазового шума и четыре алгоритма развертывания фазы: алгоритмы функций Грина [8], наименьших квадратов [9], минимальной стоимости потока [10-11] и одна из модификаций ранее предложенного авторского алгоритма выравнивания встречного вихревого поля фазы [12].

Результаты применения методики представлены в виде семейств характеристик точности – зависимостей с.к.о. высоты для различных сцен от параметра (частоты среза Fs) фильтра фазового шума (рис. 3, таблица 1).

Из полученных характеристик становится возможным определить как комбинации алгоритмов и их параметров, обеспечивающих наилучшую точность результата обработки, так и оценить достижимые показатели точности для цифровых карт рельефа, получаемых конкретной съемочной аппаратурой для различных типов рельефов. При съемке космическим PCA ALOS PALSAR: 4-5 метров (по критерию с.к.о. высот) для холмистого рельефа и 12-14 метров для низкогорного. Точность ЦМР для сцены, полученной при кросс-поляризации зондирующего и отраженного сигналов, хуже.

Рис 3. Характеристики точности работы алгоритмов интерферометрической обработки для сцен 1 и 2: а) для гауссового фильтра фазового шума и четырех различных алгоритмов развертывания фазы, сцена №1; б) для алгоритмов минимальной стоимости потока и модификации алгоритма выравнивания встречного вихревого поля фазы, сцена № 2; в) для тех же алгоритмов, сцена № 1а

Сравнение эффективности работы различных алгоритмов развертывания фазы показывает, что алгоритмы функций Грина и минимальной стоимости потока работают относительно устойчиво: графики, как правило, плавные и имеют выраженные минимумы при значениях частоты среза Fs в 150-300 элементов (0,05-0,12 ширины сцены). При этом алгоритм минимальной стоимости потока показал наилучшие результаты для всех сцен, кроме 1a, однако на сцене № 1 при Fs в интервале 150-170 эл. при его использовании возникает срыв развертывания из-за появления крупноразмерного «артефакта». Алгоритм выравнивания встречного вихревого поля фазы показывает результаты, близкие к алгоритму минимальной стоимости потока, однако достигает наилучшей точности в значительно более широком диапазоне изменения параметра фильтра.

В сцене № 1а (рис. 3-В), имеющей удвоенный размер по отношению к сцене № 1, предложенный алгоритм показал лучшую точность, поскольку алгоритм минимальной стоимости потока не может разрешить возникающую здесь фазовую неоднозначность большого размера. Алгоритм наименьших квадратов работает менее устойчиво: характеристики имеют изломы, а ширина области, в которой достигаются лучшие значения точности, уже, чем у двух первых алгоритмов.

Оптимальные значения частоты среза АЧХ фильтра фазового шума для сцен №№ 1, 1а, 2 и 3 приблизительно одинаковы, несмотря на то, что сцены получены в разных режимах съемки, и составляют порядка 150-200 эл., для 4-й сцены, где преобладает низкогорный рельеф, оптимальная частота среза составляет 300 эл.

Таблица 1. Параметры исследуемых интерферометрических сцен и наилучшая достигаемая точность по критерию среднеквадратичного отклонения измеренных и эталонных высот

№ сцены	Режим съемки	Пространственное разрешение азимут × накл. дальность)	Коэффициент некогерентного накопления (азимут × накл. дальность)	Кол-во эталонных высотных отметок	С.к.о. эталонных высот (геодезических), м	Средняя когерентность сцены	Тип рельефа;	Преобладающий тип поверхности	Наилучшая достигаемая точность по критерию с.к.о., м
1	FBD	3,1×15,0	8×2	1469	200,5	0,45	холмист.	лесная и	4,1
	(HH)							лесостепная	
1 a	FBD	3,1×15,0	4×1	1469	200,5	0,57	холмист.	лесная и	4,5
	(HH)							лесостепная	
2	FBD	3,1×15,0	8×2	1469	200,5	0,34	холмист.	лесная и	5,3
	(HV)							лесостепная	
3	FBS	3,1×7,5	8×4	1890	211,4	0,59	холмист.	лесостепная,	5,2
								городская	
								застройка	
4	FBS	3,1×7,5	8×4	2042	741,1	0,43	низкогорн.	лесная	12,1

Выводы

Описана авторская методика, позволяющая производить экспериментальную оценку точности результатов интерферометрической обработки радиолокационных дистанционного зондирования данных Земли различными (в том числе разрабатываемыми) алгоритмами подавления фазового шума и развертывания фазы рельефа. Методика включает при создании цифровых моделей обратное геокодирование координат эталонных высот в систему координат радиолокационного изображения, вычисление параметров связи восстановленных абсолютных фаз и эталонных высот с помощью метода наименьших квадратов.

Определены оптимальные (с точки зрения минимума среднеквадратичного отклонения высоты рельефа или абсолютной фазы интерферограммы) сочетания алгоритмов фильтрации фазового шума и развертывания фазы, а также значения их оптимальных параметров.

Получены минимально достижимые значения ошибок определения высот цифровых моделей рельефа, по данным полученных радиолокатором ALOS PALSAR в различных режимах съемки и для различных типов рельефа. Значения с.к.о. составили от 4,1 м для сцен с холмистым рельефом до 12,1 м для сцен с низкогорным рельефом. Разработанная методика может быть использована для исследования влияния иных условий, факторов и параметров на эффективность интерферометрической обработки.

Работа выполнена при поддержке Министерства науки и высшего образования РФ (проект № 0836-2020-0020).

Литература

1. Елизаветин И.В., Ксенофонтов Е.А. Результаты экспериментального исследования возможности прецизионного измерения рельефа Земли интерференционным методом по данным космического РСА // Исследования Земли из космоса. 1996. № 1. С. 75-90.

2. Bamler, R. Hartl, P. Synthetic aperture radar interferometry // Inverse Problems. 1998. Vol. 14(4). P. r1–r54.

3. Joughin, I.R., Li, F.K., Madsen, S.N., Rodrigues, E., et al. Synthetic Aperture Radar Interferometry // Proceedings of the IEEE. 2000. Vol. 88(3). P. 333–382.

4. Hanssen, R.F. Radar interferometry. Data interpretation and error analysis. Dordrecht: Kluwer academic publishers, 2002. 308 p.

5. Rodrigues, E., Martin, J.M. Theory and design of interferometric synthetic aperture radars // IEE Proceedings-F. 1992. Vol. 139. № 2. P. 147–159

6. Сосновский А.В. Оценивание точности восстановления абсолютной фазы при интерферометрической обработке данных радиолокаторов с синтезированной апертурой // Журнал радиоэлектроники [электронный журнал]. 2021. №.7. https://doi.org/10.30898/1684-1719.2021.7.9

7. Sosnovsky, A.V., Kobernichenko, V.G. An Efficiency Estimation for Multilooking and Phase Noise Suppression Methods for Spaceborne Interferometric Synthetic Aperture Radars Data Processing // 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE-2018). IEEE Proceedings. 2018. Vol. 1. P. 434-438

8. Yu, H., Lan, Y., Yuan, Z., Xu, J., et al. Phase unwrapping in InSAR: A review. // IEEE Geoscience and Remote Sensing Magazine. 2019. Vol. 7(1). P. 40-58.

9. Fornaro, G., Franceschetti, G., Lanari, R. Interferometric SAR phase unwrapping using Green's formulation // IEEE Transactions on Geoscience and Remote Sensing. 1996. Vol.34. No.3. P. 720–727.

10. Costantini, M. A novel phase unwrapping method based on network programming // IEEE Trans. Geosci. Remote Sensing. 1998. №.36. P. 813–821.

11. Chen, C.W., Zebker H., A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms // Journal of the Optical Society of America A: Optics and Image Science, and Vision. 2000. Vol.17. №3. P. 401–414.

12. Сосновский, А. В. Исследование и модификация метода формирования встречного вихревого поля для развертывания фазы / А. В. Сосновский // Ural Radio Engineering Journal. 2021. Vol. 5. № 3. Р. 239–257.